
1. Introduction
Inland earthquakes produce transient and permanent surface displacements that excite infrasonic acoustic waves 
(IAWs) in the Earth's atmosphere (Press & Harkrider, 1962). As they propagate to the upper layers of the atmos-
phere (∼80 km and higher), IAWs may exhibit sufficiently strong amplitudes to generat e detectable neutral 
and charged particle disturbances (Hines, 1960). Today, such observations facilitate the investigation of seis-
mically generated IAW dynamics, which enable important multidisciplinary studies toward future applications 
(Astafyeva & Shults, 2019; Inchin, Snively, Williamson, et al., 2020; Meng et al., 2019; Savastano et al., 2017).

Recently, Inchin et al. (2021) suggested that some aspects of finite-fault kinematics of large earthquakes can be 
constrained from Global Navigation Satellite System (GNSS) signal-based total electron content (TEC) obser-
vations, complemented by physics-based modeling of seismic and infrasonic acoustic wave propagation and 
induced ionospheric plasma disturbances. The results, however, demonstrated that TEC observations of IAWs 
are impacted by phase canceling effects (Georges & Hooke, 1970) and, often, suboptimal geometry of line-of-
sight (LOS) between GNSS satellite and receiver with respect to the spatial locations of plasma disturbances. In 
addition, TEC imprints of IAW dynamics occur at high altitudes from their sources (∼250–350 km). Here, IAWs 
are significantly impacted by thermo-viscous dissipation and a history of nonlinear effects prior to reaching the 
ionosphere (Inchin, Snively, Zettergren, et al., 2020; Sabatini et al., 2019). Thus, some TEC measurements may 
be insufficiently sensitive to IAWs to uncover temporal and spatial evolutions of earthquake rupture on individ-
ual fault segments involved in the faulting process. New observational techniques and instrumentation for the 
investigation of earthquake/tsunami-atmosphere coupled dynamics may provide complementary insight for these 
geophysical processes.

Recent modeling and observational studies show that mesopause airglow (MA) imagers can be sensitive to small-
scale fluctuations, of minute periods and kilometers of wavelengths (Bittner et al., 2010; Pilger et al., 2013). Hecht 
et al. (2014) studied instability features and transients of less than 10 km horizontal wavelength (λx) seen over 
Maui with the Aerospace Corporation's Nightglow OH Imager of 70° field-of-view (FOV), 0.5 km horizontal 
resolution and 2 s of cadence time. Hannawald et al. (2016) reported observation results of small-scale transients 
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in hydroxyl (OH) airglow (λx ∼ 7–10 km) with imaging system FAIM (Fast Airglow IMager) of 20 × 24° FOV 
and horizontal resolution as fine as 120 m, acquiring two images per second. Sedlak et al. (2016) demonstrated 
high-resolution observations of small-scale gravity waves and turbulence features in the OH airglow with a new 
version of the FAIM of 17 m for pixel spatial resolution in zenith direction and FOV of 11.1 × 9.0 km at the 
OH layer height and a temporal resolution of 2.5–2.8 s. With the use of a short-wave infrared (SWIR) camera 
of 32 × 27° FOV, 174 m of spatial resolution and 0.4 s integration time, Le Dû et al. (2020) showed that OH 
emissions can be disturbed by infrasound generated by ocean swells near a specific periodicity of ∼5 s. GRIPS 
13 instrument (GRound-based Infrared P-branch Spectrometer), discussed in Pilger et al.  (2013) and Schmidt 
et al. (2013), with temporal resolution of 5 s and 15 × 15° FOV, were shown to capture short-period MA dynam-
ics, including those associated with infrasound. The characteristics of these instruments may be sufficient for the 
detection of MA fluctuations driven by comparatively strong IAWs generated during M7–9 earthquakes.

Here, through numerical simulations, we investigate the hypothesized but unobserved MA responses to IAWs 
generated during the 2016 M7.8 Kaikoura earthquake to demonstrate the potential of MA observations in future 
seismological applications. This event is considered to be one of the most complex in-land earthquakes, with ∼20 
ruptured fault segments identified from seismic and geodetic data (Hamling et al., 2017; Xu et al., 2018). The 
faulting area was estimated to span ∼180 km, with a rupture propagation for over ∼90 s from the hypocenter, near 
its southern end, to the northeast (Clark et al., 2017; Holden et al., 2017; Litchfield et al., 2018). The discrep-
ancies in finite-fault source models among different studies led to ambiguous interpretations of the earthquake 
rupture evolution (Ando & Kaneko, 2018; Bai et al., 2017; Chamberlain et al., 2021; Holden et al., 2017; Ulrich 
et al., 2019; Wang et al., 2018). In particular, there were difficulties in isolating seismic signals generated by the 
Papatea Fault (PF), which is the area of large surface vertical displacements of up to ∼10 m (Tan et al., 2019; 
Zhang et al., 2017).

MA perturbations simulated here reach ∼18% peak-to-peak (ptp) in vertically integrated volume emission rates 
(IVER) of hydroxyl OH(3,1) and atomic oxygen O( 1S) emissions and 3.62% (5.8  K) of brightness-weighted 
temperature (BWT) of OH(3,1), additionally suggesting that they are potentially detectable with ground-based 
OH imagers, whereas O( 1S) 557.7 nm emission observations may capture a long-living depletion formed after the 
propagation of IAWs. The results show that, in comparison with TEC, the OH airglow layer is sensitive to both 
the timing of rupture initiation and its direction of propagation on the Papatea Fault.

2. Modeling Approach
To specify a source of seismic waves and resulting IAWs, we use a previously developed and validated earthquake 
source model (Inchin et al., 2021). We combined the kinematic model by Holden et al. (2017) and the specifica-
tion of the Papatea Fault (PF) by Xu et al. (2018) (hereafter, Holden-Xu model) (Figure 1), that was previously 
found to reproduce near-epicentral seismic and geodetic observations and provide the closest agreement with 
detected TEC perturbations. In this model, the rupture first initiates on the Humps fault at T0 = 11:02:56 UT, 
propagates predominantly to northeast on the Hundalee fault with a velocity of ∼1.9 km/s, and then moves onto 
the Point Kean fault offshore at T0 + 31 s. Next, the rupture continues onto the northern faults, including Upper 
Kowhai, Kekerengu, Papatea, and Needles at a velocity of ∼2.0 km/s. Detailed description of this model can be 
found in Inchin et al. (2021).

To demonstrate the sensitivity of IAW imprints on the MA to the rupture evolution, we provide modeling results 
from simulations with various configurations of the PF, as shown in Table 1. These configurations differ in the 
specification of the time of rupture initiation and the direction of rupture propagation on the PF. In finite-fault 
Model 1, we specify rupture initiation on the PF at T0 + 57 s, propagating from the south to the north, as proposed 
by for example, Archuleta et al. (2018), Inchin et al. (2021). In Models 2 and 3, we investigate MA responses to 
IAWs excited with rupture initiation on the PF at T0 + 27 s (i.e., 30 s earlier than in Model 1). In Model 2 we set 
the same direction of rupture propagation on the PF as in Model 1–from the south to the north, while in Model 
3 the direction is set from the northwest to the southeast, as proposed by Wang et al. (2018). Temporal evolution 
of rupture in models 1 and 2 are demonstrated in Figures 1c and 1d and the results for Model 3 are provided in 
https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/. Finally, Model 4 is based on the same Hold-
en-Xu finite-fault model, but without inclusion of the PF (Holden et al., 2017).

https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/
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Surface vertical displacements, as a source of IAWs in the atmosphere, are 
computed using the seismic wave propagation code SPECFEM3D (Koma-
titsch & Tromp, 1999; Komatitsch & Vilotte, 1998). In each simulation, the 
surface displacements are then used to impose vertical velocity lower bound-
ary conditions for the 3-D compressible nonlinear neutral atmosphere Model 
for Acoustic-Gravity wave Interactions and Coupling (MAGIC) (Sniv-
ely, 2013; Zettergren & Snively, 2015). We use a 0.5 × 0.5 × 0.25 km resolu-
tion grid along latitude, longitude and altitude, respectively. A wave-absorb-
ing (sponge) layer is applied at altitudes between 175 and 250 km, smoothly 
suppressing IAWs at the top of the numerical domain to avoid boundary 
wave reflections. The profiles of meridional and zonal winds are derived 
from empirical model HWM-14 (Picone et al., 2002), and temperature and 
major neutral species densities are derived from the empirical model NRLM-
SISE-00 (Drob et al., 2015).

Figure 1. (a) Slip rates from the finite-fault models 1–3 (see Table 1). (b) Vertical displacement field obtained from a forward seismic wave propagation simulation 
based on the finite-fault model 1 with the indication of main rupturing faults and areas. The color scale on the plots is oversaturated for better visibility of small 
features. Temporal evolution of the rupture for (c) finite-fault Model 1 and (d) Model 2. The red star is positioned at the epicenter.

Model PF rupture nucleation time
PF rupture direction 

propagation

1. Holden-Xu T0 + 57 s From south to north

2. Holden-Xu T0 + 27 s From south to north

3. Holden-Xu T0 + 27 s From NW to SE

4. Holden et al. (2017) N/A N/A

Note. T0 = 11:02:56 UT is the origin time of the earthquake.

Table 1 
Finite-Fault Models and Configuration of the Papatea Fault (PF)
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The configuration of MA photochemistry and dynamics is based on the formulation discussed in Snively 
et al. (2010) and Snively (2013), using the chemistry of Adler-Golden (1997) and Makhlouf et al. (1995, 1998). 
We investigate MA perturbations of two emissions: hydroxyl OH(3,1) with band center at ∼1504.7  nm and 
atomic oxygen O( 1S) at 557.7 nm. Continuity equations for ozone O3 and hydroxyl H are solved with their chem-
ical productions and losses, calculated time-dependently in the MAGIC simulation. The calculation of photon 
volume emission rates for OH(3,1) and O( 1S) is based on a steady-state approach, taking into account that their 
emission photochemistry occurs over time scales much shorter than periods of IAWs at mesospheric heights in 
this study. Figure 2 shows the initial profiles of major and minor gas species densities, as well as the OH(3,1) 
Meinel band and O( 1S) 557.7 nm volume emission rates incorporated into the simulations. Exponential decrease 
of major gas species O2 and N2 mass density is followed by increasing density of atomic oxygen O that plays a 
crucial role in the energy budgets at these heights. Two minor species (ozone O3 and hydrogen H) dominate at 
altitudes 75–100 km and serve as precursors for OH production. The peak of OH(3,1) volume emission rate is at 
altitude ∼86 km and the peak of O( 1S) is at ∼95 km.

3. Simulation Results
In this section, we first demonstrate simulation results with finite-fault Model 1 in detail (Section  3.1), and 
then compare its results with simulations based on finite-fault models 2–4 (Section 3.2). Finally, in Section 3.3, 
we demonstrate synthetic images with hypothetical observation systems that may potentially capture coseismic 
IAWs-induced MA dynamics.

3.1. IAWs and MA Responses Simulated With Finite-Fault Model 1

The source region for IAWs in the atmosphere can be roughly divided into two areas–the southwest around Humps 
and Hundalee faults, and the northeast around the PF, Kekerengu and Needles faults (Figure 1b). Figure 3 presents 
snapshots of vertical fluid velocities at two moments of time over the heights of interest, as well as time series of 
vertical fluid velocities at 87 and 95 km altitudes, for positions over the southern faults (42.4°S/173.28°E) and 

Figure 2. The profiles of initial (a) major gas (O2, O, N2) species densities, (b) minor gas species densities (O3 and H), and 
(c) Oxygen O ( 1S) 557.7 nm and hydroxl (OH) (3,1) ∼1504.7 nm volume emission rates used in simulations.

Figure 3. (a), (b), (e), and (f) Height profile of vertical fluid velocities for two positions over southern and northern faults. 
(c), (d), (g), and (h)Time series of vertical fluid velocities at 87 and 95 km altitudes for the same two positions over southern 
and northern faults. Temporal cadence of simulation output is 5 s.
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northern faults (41.95°S/173.75°E). The northern faults produce markedly stronger IAWs due to larger surface 
displacements. IAWs at mesopause altitudes already evolve to shocks and reach amplitudes −18.57/+12.73 K 
(−72.85/+46.96 m/s vertical fluid velocity) and −26.61/+24.73 K (−112.08/+77.09 m/s vertical fluid velocity) 
at 87 and 95 km respectively. Having local speeds of sound at these two altitudes of 267.68 m/s and 277.13 m/s, 
respectively, IAWs propagate in a strongly nonlinear regime (tens of % of local Mach number). The most discern-
ible and the strongest acoustic shock N-wave signatures at 87–95 km heights, formed over southern and northern 
fault areas, exhibit periods of ∼30–45 s and the propagation of the overall packet of individual shocks takes 
∼2 min. These shock N-waves have vertical wavelengths of 7–11 km at these heights, thus being comparable or 
larger than the depth of the full layer of OH or O( 1S). The IAWs generated by transient displacements from seis-
mic wave propagation farther from the epicentral area, are comparatively weak and exhibit amplitudes of ∼3 K 
and ∼14 m/s of vertical fluid velocities. The link, https://commons.erau.edu/dm-infrasonic-acoustic-wave-im-
prints/ includes the data sets of vertical fluid velocity fields for the moments of time presented in Figure 3. We 
also refer to Inchin et al.  (2021) who discussed simulation results of IAW evolution from ground level to the 
ionosphere with the use of the same finite-fault models in detail.

The temporal and spatial evolution of perturbations simulated with the finite-fault Model 1 MA disturbances 
closely replicate the propagation of the rupture–from the southwest to the northeast. Figures  4a–4c presents 
OH(3,1) BWT perturbations at three time epochs. The earliest arrival of IAWs to mesopause heights occurs at T0 
+ 240 s (see the animation in https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/), what is roughly 
consistent with the time of acoustic wave arrival from the ground to the altitudes of the OH(3,1) layer (Figure 4a). 
MA disturbances are focused to the northeast and result from IAWs generated during the rupture propagation 
on the Humps fault from the southwest to the northeast. Over Humps fault, OH(3,1) BWT perturbations reach 
∼1.12% (∼2 K), and 4.9% and 4% ptp for OH(3,1) and O( 1S) IVER, respectively. Demonstrated in this section 

Figure 4. (a)–(c) The snapshots of Hydroxyl (OH) (3,1) brightness-weighted temperature (BWT) perturbations in percent from the background for 3 time epochs from 
Model 1 (Holden-Xu simulation). (d)–(f) BWT and integrated airglow photon emission rates for OH(3,1) and oxygen O ( 1S) at T0 + 505 s after rupture nucleation.

https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/
https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/
https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/
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IVER is calculated by integrating volume emission rates vertically for each horizontal position of the numerical 
domain. At later time, MA perturbations of ∼1.24% OH(3,1) BWT (∼2.2 K), ∼7.2% ptp OH(3,1), and 9.3% ptp 
O( 1S) IVER appear east-northeast, and are linked with IAWs that are excited when the rupture propagates on the 
Hundalee and Point Kean faults (Figure 4b).

Next, the MA perturbations appear over northern faults. The strongest perturbations (∼3.2% ptp OH(3,1) BWT 
(∼5.8 K ptp), ∼18% ptp OH(3,1), and O( 1S) IVER) appear over the PF and rupture reactivation at the southern 
end of the Kekerengu fault (Figure 4c). Here, MA layers experience steep and nonlinear displacements driven by 
strongly nonlinear IAWs, followed by quasi-permanent emission depletions apparent in O( 1S) volume emission 
rates. These perturbations overlay upon those appearing farther north-northeast and attributable to the rupturing 
on the northern part of Kekerengu and Needles faults (Figure 4c). We additionally present the OH(3,1) BWT, 
OH(3,1), and O( 1S) IVER perturbations at T0 + 505 s in Figures 4d–4f. Horizontally expanding IAWs drive 
detectable perturbations of ∼3%–7% ptp OH(3,1) and O( 1S) IVER. Even at this later time epoch, the southern 
and northern fault areas of IAW generation can be distinguished in MA emissions.

Figure 5 presents time-distance diagrams of vertical surface velocities and OH(3,1) and O( 1S) IVER perturbations 
for meridional (along 173.31°E) and zonal (along 42.062°S) slices. As expected, the strongest MA perturbations 
are generated from permanent surface displacements over the ruptured area. Away from the epicentral area, MA 

Figure 5. Latitude-time diagrams of (a), (b) surface vertical velocities, (c), (d) OH(3,1), and (e), (f) O( 1S) integrated volume emission rates (IVER) perturbations 
for meridional (top) and zonal (bottom) slices. The plots are oversaturated for better visibility of weak signatures. (g) Time series of O( 1S) IVER perturbations over 
42.14°S/173.70°E. Note that time labels in panels (c)–(g) starts at T0 + 210 s.
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perturbations with apparent horizontal phase velocities of ∼3.5 km/s are driven by IAWs from seismic wave prop-
agation, but they are fairly weak (<1% OH(3,1) IVER). First MA perturbations appear above the southern faults 
and then shift to the northern fault area, and practically mimic the evolution of ground displacements (Figures 5c 
and 5d). From these diagrams, it is difficult to discern MA perturbations driven by the PF and the Kekerengu 
fault separately, as their displacements produce IAWs over a spatially localized region practically simultaneously. 
After the propagation of IAWs, OH(3,1) IVER continues fluctuating and damping, but O( 1S) IVER is locally 
depleted by ∼12%–14% due to nonlinear responses of this layer to strongly nonlinear IAWs (Figures 5e–5g).

3.2. Comparison of MA Responses to IAWs Simulated With Finite-Fault Models 1–4

The determination of rupture initiation time and rupture propagation direction on the PF using conventional 
seismic and geodetic data sets is complicated due to the difficulty of the retrieving of PF signals from available 
sparse seismic observations (Holden et  al.,  2017). Here, we demonstrate that MA fluctuations, generated by 
IAWs, closely replicate the rupture evolution on the PF.

The snapshots of MA perturbations from 3 simulations with finite-fault models 1–3 are presented in Figure 6. For 
each simulation, OH(3,1) IVER, and BWT perturbations at T0 + 300 s and O( 1S) IVER at T0 + 340 s are provided. 
In the simulation with Model 1, due to the later time of rupture initiation on the PF (T0 + 57 s), IAWs excited 
above the PF and northern faults do not yet reach 80–95 km altitudes, and thus, at the time epoch shown, MA 
perturbations are generated only by the southern faults (Figure 6a–6c). In comparison, from simulation results 
with finite-fault Models 2 and 3, which include PF rupture initiation at T0 + 27 s, MA perturbations generated by 
the PF are already seen at these time epochs (Figure 6d–6i).

Next, we demonstrate simulation results of MA perturbations from simulations with models 1–3 for OH(3,1) at 
T0 + 320 s and O( 1S) at T0 + 360 s in Figure 7. The propagation of the rupture on the PF from the south to the 
north, as specified in Model 2, are causes for the focusing of IAWs and related MA perturbations to the northeast 
(Figures 7d–7f). In contrast, the propagation of the rupture on the PF from the northwest to the southeast, results 
in focusing on IAWs and MA perturbations to the southwest (Figures 7g–7i). Although the focusing of IAWs is 
constrained in the southwest-northeast direction, and this is connected with the spatial orientation of the PF and 
respective vertical surface displacements, MA imprints still demonstrate the sensitivity to the variation in the 
direction of rupture propagation on the PF.

Finally, we demonstrate the time series of maximum absolute ptp OH(3,1) IVER perturbations from simulations 
with finite-fault models 1–4 in Figure 8. The link, https://commons.erau.edu/dm-infrasonic-acoustic-wave-im-
prints/ includes the table of values of OH(3,1) IVER perturbations presented on a plot, as well as of OH(3,1) 
BWT (absolute and percent from the background) and O( 1S) IVER. Earlier initiation of the rupture on the Papatea 
Fault in simulations with models 2 and 3 leads to earlier appearance of OH(3,1) IVER perturbations than in the 
simulation with Model 1. The peaks highlighted in the oval demonstrate compression (9%–10.5% OH(3,1) IVER) 
and rarefaction phases (∼14%–16% OH(3,1) IVER) of IAW propagating through the OH layer. Stronger perturba-
tions in the simulation with Model 3 (than in the simulation with Model 2) result from constructive interference 
of IAWs from the southern faults and focused to the southwest IAWs excited over the Papatea Fault. The peak 
of perturbations in all simulations at T0 + 370 s is linked with the depletion generated after the propagation of 
the IAWs. At the same time, the absence of the Papatea Fault in the simulation with finite-fault Model 4 leads to 
the weakest perturbations (∼12% OH(3,1) and O( 1S) IVER, 2.38% OH(3,1) BWT or 4.28 K). Such comparative 
analysis of peak amplitudes of MA emission perturbations may provide hints on the dynamics of IAWs and thus 
their sources along the whole spatial and temporal extent of the earthquake rupture.

3.3. Simulation of MA Observation Systems

The simulation results suggest that a moderate earthquake, such as the Kaikoura earthquake in New Zealand 
in 2016, can drive IAWs of amplitudes of tens of Kelvins and periods of 30–45 s at mesopause altitudes, with 
corresponding wavelengths of 7–11 km. IAWs may result in OH(3,1) IVER fluctuations of ∼15%–18% and OH 
BWT of up to ∼5.8 K. O( 1S) IVER fluctuations reach ∼18%, and exhibit a persistent depletion of the emission.

To demonstrate the potential to capture such dynamics in MA, we simulate several observation systems. The 
characteristics of simulated imagers are presented in Table 2. FOV is the solid angle that represents the imager's 

https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/
https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/
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view; it is expressed in terms of the radially symmetric planar viewing angle with the imager's zenith at the center. 
We first simulate a narrow FOV (40°), but high temporal resolution imager with an integration time ≲1 s. This 
assumption of a short integration time ≲1 s is made on the basis that it is notably shorter than the resolvable IAW 
time-scales of the simulation, in terms of effective model resolution and sampling. The second OH(3,1) obser-
vation system has a FOV of 70° and an integration time of 5 s. Finally, we simulate 100° FOV OH(3,1) imager 
with an integration time of 10 s, similar to the system discussed by Pautet et al. (2014). For the O( 1S) we simulate 
observation systems with 20 and 30 s integration times and 70° and 100° FOV, respectively. Each imager has the 
same number of pixels–256 × 256. The resolution in Table 2 is reported at zenith direction, whereas it degrades 
with increasing angle of observations, for example, at 45° zenith angle it may be reduced by half. The animations 
of images with all 5 observation systems and their unwarped representation on geographical maps are provided 
in https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/.

The images of OH(3,1) and O( 1S) IVER are synthesized by the integration of three-dimensional simulated 
airglow layer volume emission rates along the line-of-sight (LOS) for each pixel in a 256 × 256 array. An imager 
is represented by its lens profile and FOV, being at particular location and rotated, pointing at specified tilt and 

Figure 6. Snapshots of perturbations in the hydroxyl (OH) (3,1) brightness-weighted temperature (BWT; left column), the OH(3,1) integrated volume emission rates 
(IVER; middle column), and oxygen O ( 1S) IVER (right column) from 3 simulations with finite-fault models 1–3 introduced in Table 1. The snapshots in the right 
column are provided at a later moment of time due to later arrival of infrasonic acoustic waves at O( 1S) heights.

https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/
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azimuth angles. We find the intersection of each pixel's LOS and an ellipsoid 
that represents an atmospheric layer at each height. Each of these ellipsoids 
are obtained by expanding the semi-major axis of the WGS84 reference ellip-
soid by every increment along the LOS. The semiminor axis is calculated 
with the original flattening of the WGS84 ellipsoid, thus preserving its shape 
at every height. The spatial resolution along LOS (for the integration of emis-
sion volume rates) is set as 125  m. With this mapping we interpolate the 
volumetric data at every intersection point and then integrate along the LOS 
to obtain a flat image. This effectively maps a thick airglow layer onto a 
2-D pixel surface, such as a CCD or solid-state sensor. This is done for both 
perturbation and background data to obtain relative perturbations. The result-
ing synthetic image is then unwarped at the VER peak heights of OH(3,1) 
and O( 1S) layers by using the same LOS-ellipsoid intersection algorithm, at 
87 and 95 km altitudes, respectively. The integration time is incorporated by 
integrating data sets from synthetic images in the related time window and 
dividing the results by the number of frames.

Figure 7. Snapshots of perturbations in the hydroxl (OH) (3,1) brightness-weighted temperature(BWT; left row), the OH(3,1) integrated volume emission rates (IVER; 
middle column), and O( 1S) IVER (right column) from 3 simulations with finite-fault models 1–3 introduced in Table 1. Time epochs of the snapshots are indicated in 
each panel. The plots are oversaturated for better visibility of weak signatures. The snapshots in the right column are provided at a later moment of time due to later 
arrival of infrasonic acoustic waves at oxygen O ( 1S) heights.

Figure 8. Absolute maximum ptp hydroxl (OH) (3,1) integrated volume 
emission rates (IVER) perturbations at each moment of time for the whole 
numerical domain from simulations with finite-fault models 1–4.
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First, we demonstrate images captured with zenith-looking observation 
systems in Figure 9. We use the center of the numerical domain as the loca-
tion of imagers (42.198°S/173.653°E). The images with observation system 
1, presented in Figures 9a–9e, demonstrate that even a comparatively narrow 
FOV imager could be sufficient to detect OH(3,1) VER fluctuations driven 
by the southern faults (Figures 9a and 9b), and strong fluctuations driven by 
the PF and the southern part of the Kekerengu fault (Figure 9c). Images with 
observation systems 2 and 3 in panels f–o also demonstrate that short inte-
gration times of 5 and 10 s lead to only slightly blurred, but still discernible 
dynamics of IAWs from the southern and northern faults. In comparison, 
images with observation system 5 demonstrate that a long integration time 
(here, 30 s) leads to substantial smoothing of the MA dynamics. Neverthe-
less, even with such long integration time, it is possible to discern fluctua-
tions and especially those connected with emission depletion.

Next, in Figure 10, we demonstrate synthetic images with observation system 
2 from Table 2, varying its location and camera azimuth angle. Tilt of the 

camera (zenith angle) is set as 35° in all three scenarios shown. Imager locations and geometry of observations 
relative to MA dynamics lead to highlighting of various parts of MA fluctuations due to phase canceling effects. 
All 3 setups of imagers would be useful in discerning the dynamics of interest, highlighting the evolution of the 
IAWs (and thus rupture evolution) from the southwest to the northeast, with the strongest fluctuations over the 
PF.

4. Discussion and Conclusion
We have investigated the characteristics and evolution of mesopause airglow (MA) perturbations generated by 
infrasonic acoustic waves (IAWs), excited during the 2016 M7.8 Kaikoura earthquake. We first calculated real-
istic time-dependent surface displacements in forward seismic wave propagation simulations. Then, vertical 
surface velocities were used at the bottom boundary condition in the 3D nonlinear neutral atmosphere model 
MAGIC for the simulation of IAWs, along with their observable effects on the MA photochemistry.

The variations of OH(3,1) and O( 1S) IVER perturbation amplitudes are in the range 6%–18% from the back-
ground states (or 1–5.8 K of OH(3,1) BWT, 0.6%–3.2% from the background state) over different regions of the 
ruptured area. The nonlinear response of the O( 1S) layer leads to the formation of a mesopause airglow depletion 
of ∼12%–14%. The scales of resulting perturbations closely match those of IAWs and are in the range 30–45 s 
period pulse durations for the dominant acoustic N-wave shocks with 7–11 km wavelengths at mesopause alti-
tudes. The IAWs themselves experience strongly nonlinear evolutions having amplitudes of tens of % of local 
Mach number (∼260–280 m/s of vertical fluid velocities). The amplitudes of MA perturbations generated by 
distant seismic waves (e.g., Rayleigh waves), in contrast to those generated in the near-epicentral region, are fairly 
small and are unlikely to be registered with modern imagers.

Modeling results further support that MA observations may supplement the investigation of finite-fault kine-
matics of large earthquakes at nighttime. Simulated MA perturbations include information on both the time of 
rupture initiation and the direction of rupture propagation on the PF. The absence of the PF IAW source processes 
results in ∼26% weaker OH(3,1) BWT perturbations (4.3 vs. 5.8 K of OH(3,1) BWT perturbations). Interestingly 
to note, Inchin et al. (2021) found a similar relative difference in amplitudes of TEC perturbations from simula-
tions with and without the PF.

We explored and addressed the possibility to infer earthquake rupture evolution from IAW imprints on MA in 
4 specifications of the PF, based on earlier published assumptions about it (e.g., Archuleta et al., 2018; Holden 
et al., 2017; Inchin et al., 2021; Wang et al., 2018). The detection and analysis of such short-period MA transients 
could potentially be achieved with modern OH imagers of high temporal and spatial resolutions (Hannawald 
et al., 2016; Hecht et al., 2014; Pautet et al., 2014; Sedlak et al., 2016), whereas current O( 1S) imagers may be 
suitable for the detection of the depletion in emissions resulting from the propagation of strong nonlinear acoustic 
shock waves. Such observations may be useful in regions of sparse networks of seismic and geodetic observa-
tions and in cases of complex, multi-fault earthquakes. They may also be used to study undersea earthquakes, as 

Imager Emission
Field-of-

view (FOV)
Resolution per 
pixel (zenith)

Integration 
time (IT)

1. OH(3,1) ∼1504.7 nm 40° 237 m ≲1 s a

2. OH(3,1) ∼1504.7 nm 70° 415 m 5 s

3. OH(3,1) ∼1504.7 nm 100° 593 m 10 s

4. O( 1S) 557.7 nm 70° 453 m 15 s

5. O( 1S) 557.7 nm 100° 647 m 30 s

 aShorter than the resolvable infrasonic acoustic wave time-scales of the 
simulation.

Table 2 
Characteristics of Modeled Imagers
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a source of information on ocean surface displacements and their evolution, potentially useful for the estimation 
of tsunami hazard. We highlight that MA observations may not uncover other rupture progression configurations, 
for example, shorter time difference of rupture initiation on the Papatea fault between models. Further parametric 

Figure 9. Synthetic images of integrated volume emission rates (IVER) for the observation systems presented in Table 2 and 
their unwarped representations on a geographic map. The images are shown on an oversaturated scale for visibility of weaker 
features. An opacity is added to the unwarped images to visualize the underlying topography. Time epochs of snapshots for 
oxygen O ( 1S) IVER are specified separately.
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modeling and observational campaigns may be directed toward the investigations of MA sensitivity to a broad 
range of rupture evolutions.

Earlier, based on modeling results, Inchin, Snively, Williamson, et al. (2020) demonstrated that strongly nonlin-
ear IAWs can drive potentially detectable MA perturbations over epicentral regions of large crustal earthquakes. 
At the same time, the simulated IAWs and MA responses could be uncommonly large due to unprecedentedly 
large displacements produced by the 2011 M9.1 Tohoku-oki earthquake. Here, along with the investigation of 

Figure 10. Synthetic images of integrated volume emission rates (IVER) captured with observation systems 2 with different 
azimuth angles and location of the imager and its unwarped representations on a geographic map. Black dots depict the 
position of imagers and arrows–directions of pointing.
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the information that MA observations of IAWs may provide on related surface dynamics, we demonstrated that 
earthquakes of magnitude 7–8, which occur more frequently, may also result in comparatively large fluctuations 
in MA, up to ∼18% in OH(3,1) and O( 1S).

The displacements of emitting particles considered here are aligned with the transport of major and minor neutral 
species, thus providing direct information on IAW dynamics, in comparison with TEC observations which 
include plasma responses to IAWs affected by magnetic field effects. The results demonstrate that IAWs at 
85–105 km include more comprehensive information about their source, whereas individual shocks at ∼200 km 
upward (at altitudes where TEC perturbations are detected) fully coalesce into shock N-waves and experience 
substantial smoothing due to thermo-viscous dissipation (Inchin et al., 2021). Also, MA observations can provide 
data sets several minutes earlier than TEC observations in tsunami early warning system applications. However, 
these measurements still depend on the mutual geometry between the LOS and the direction of motion of the 
emitting particles. Practically, the requirement for nighttime operation, without clouds or a bright Moon, of the 
airglow imaging systems synthesized here is a main drawback, whereas perturbations in TEC can be studied at 
any time of the day.

We caution that several factors may affect the agreement of simulation results with MA observations of coseismic 
IAWs. The biases in the determination of background atmospheric state (e.g., temperature, neutral species densi-
ties, and kinematic viscosity) and wind profiles from empirical models, such as NRLMSISE-00 and HWM14 
used here (Drob et al., 2015; Picone et al., 2002), may cause differences in the determination of IAW amplitudes 
and their arrival times at mesopause altitudes. In addition, as MA observations present integrated values, the 
determination of the exact time of arrival of leading IAW shocks is complex. We also defer diagnosing the 
duration of the mesopause airglow depletion's (“hole”) recovery following impact of a nonlinear IAW, but it is 
important to note that even for the Kaikoura earthquake of magnitude 7.8, the MA hole can be formed and likely 
observed to persist. A more detailed description of airglow dynamics and chemistry, along with the incorporation 
of long-period and large scale planetary, tidal, turbulence and wind dynamics can provide additional insight and 
fidelity in simulations. To understand thresholds of detectability and sensitivities to atmospheric parameters, 
parametric studies will also be of considerable value, and are now pending.

The practical detection of fluctuations associated with nonlinear IAWs in MA would require imagers specifi-
cally configured or adapted to investigate the dynamics of interest, but this discussion is beyond the scope of the 
current manuscript. Nevertheless, the model simulation results strongly suggest that imaging of the MA IAW 
fields associated with the 2016 Kaikoura earthquake may have helped to clarify hypotheses on the PF rupture 
process and timing, thus warranting further investigation.

Data Availability Statement
SPECFEM3D-Cartesian codes are available through https://geodynamics.org/. The geographic map used for 
unwarped images in Figure 9 is taken from General Bathymetric Chart of the Oceans (GEBCO) archive (https://
download.gebco.net/). Detailed movies of the simulations and relevant data in support of reproducibility can be 
found here: https://commons.erau.edu/dm-infrasonic-acoustic-wave-imprints/.
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