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[11 We develop a spectral element method for the simulation of long-term histories

of spontaneous seismic and aseismic slip on faults subjected to tectonic loading.

Our approach reproduces all stages of earthquake cycles: nucleation and propagation of
earthquake rupture, postseismic slip and interseismic creep. We apply the developed
methodology to study the effects of low-rigidity layers on the dynamics of the earthquake
cycle in 2-D. We consider two cases: small (M ~ 1) earthquakes on a fault surrounded by a
damaged fault zone and large (M ~ 7) earthquakes on a vertical strike-slip fault that cuts

through shallow low-rigidity layers. Our results indicate how the source properties of
repeating earthquakes are affected by the presence of a damaged fault zone with low
rigidity. Compared to faults in homogeneous media, we find (1) reduction in the
earthquake nucleation size, (2) amplification of slip rates during dynamic rupture
propagation, (3) larger recurrence interval, and (4) smaller amount of aseismic slip.
Based on linear stability analysis, we derive a theoretical estimate of the nucleation size
as a function of the width and rigidity reduction of the fault zone layer, which is in
good agreement with simulated nucleation sizes. We further examine the effects of
vertically-stratified layers (e.g., sedimentary basins) on the nature of shallow coseismic
slip deficit. Our results suggest that low-rigidity shallow layers alone do not lead to
coseismic slip deficit. While the low-rigidity layers result in lower interseismic stress
accumulation, they also cause dynamic amplification of slip rates, with the net effect

on slip being nearly zero.

Citation: Kaneko, Y., J.-P. Ampuero, and N. Lapusta (2011), Spectral-element simulations of long-term fault slip: Effect of
low-rigidity layers on earthquake-cycle dynamics, J. Geophys. Res., 116, B10313, doi:10.1029/2011JB008395.

1. Introduction

[2] Earthquake cycle simulations are important for
understanding earthquake mechanics and physics-based
hazard analysis. Modeling long-term slip histories of faults
remains, however, quite challenging due to a wide range of
spatial and temporal scales involved. To simulate a spon-
taneous earthquake sequence on a fault, a model needs to
incorporate and resolve slow tectonic loading during the
interseismic periods, nucleation and propagation of rupture
during earthquakes that involve rapid changes in stress and
slip rate at the propagating dynamic rupture tips, and the
subsequent postseismic deformation and aseismic afterslip.
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In addition, destructive large earthquakes occur on faults
that extend tens to hundreds of kilometers while variations
in stress changes and slip rate at the rupture tip occur over
distances of the order of meters.

[3] Many approaches to modeling long-term histories of
fault slip have been proposed [e.g., Shibazaki and Matsu 'ura,
1992; Rice, 1993; Cochard and Madariaga, 1996; Tullis,
1996; Ward, 1997; Rundle et al., 1999; Kato, 2004; Duan
and Oglesby, 2005; Liu and Rice, 2005; Hillers et al., 2006;
Dieterich and Richards-Dinger, 2010] but all of them used
simplified treatments of either aseismic slip processes (e.g.,
nucleation, fault creep, and afterslip) or inertial effects during
dynamic rupture. Lapusta et al. [2000] and Lapusta and Liu
[2009] developed 2-D and 3-D boundary integral methods
(BIMs) capable of capturing both seismic and aseismic slip
and the gradual process of earthquake nucleation. Those
studies are restricted to planar faults embedded in a uniform
elastic space or a half-space. At the same time, observations
indicate complex crustal structures with variable bulk prop-
erties, fault damage zones, and non-planar fault geometries.
Hence it is important to include those factors into long-term
earthquake cycle models, combining them with laboratory-
derived fault constitutive relations.
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[4] In this work, we develop a spectral element method
(SEM) that can enable us to simulate long-term history of
spontaneous seismic and aseismic slip on a fault embedded
into heterogeneous bulk and subjected to laboratory-derived
rate and state friction and slow tectonic loading. In particular,
we present a quasi-static SEM with a time updating scheme
that can be used to model long-term deformation histories and
that is suitable for a fault boundary governed by a rate and
state friction formulation. Our model merges the explicit
scheme presented by Kaneko et al. [2008] for simulating
dynamic rupture propagation with the quasi-static SEM devel-
oped in this work for modeling slow tectonic loading and the
associated crustal deformation and fault slip. The SEM with
an explicit time scheme was built upon prior studies by
Komatitsch and Vilotte [1998], Komatitsch and Tromp [1999],
and Ampuero [2002]. The combined algorithm is able to
resolve all stages of an earthquake cycle, including gradual
nucleation processes, dynamic rupture propagation, post-
seismic slip, and aseismic processes throughout the loading
period. Since the presented approach is based on finite element
methodology, it can be adapted to simulations of non-planar
faults and fault systems.

[5] Our methodology is described in sections 2 and 3.
Section 3 also illustrates its potential by presenting simu-
lations of long-term slip on a fault segment with relatively
simple distributions of fault friction properties. To verify the
developed SEM approach, we compare SEM and BIM
simulation results in a 2-D model of small (M ~ 1) repeating
earthquakes. We then consider two application examples to
explore the potential effects of variable bulk properties on
repeating earthquakes (sections 4 and 5).

[6] In section 4, we consider small repeating earthquakes
on a fault that bisects a meter-scale fault-parallel low-rigidity
zone embedded in undamaged or damaged but higher-
rigidity host rock. Such a model configuration is motivated by
localized damaged zones surrounding fault cores often found
on exhumed faults [e.g., Chester et al., 1993]. Recently,
meter-thick foliated fault gouge of extremely low P- and
S-wave speeds embedded within a 200-m wide damaged
zone at 2.6-2.8 km depths was found in the EarthScope’s
San Andreas Fault Observatory at Depth (SAFOD) project
[Zoback et al., 2010]. Simulations of single earthquake
rupture suggest that such a mechanical configuration leads
to perturbed rupture speeds and slip velocity of propagating
rupture, resulting in high-frequency oscillations in the slip
function near the rupture front [Harris and Day, 1997]. Here
we examine additional effects of a fault-parallel low-rigidity
zone on earthquake source properties of simulated repeating
earthquakes. We compare the model response in a layered
bulk with that in a homogeneous bulk, and investigate how
earthquake source properties, such as stress drop, recurrence
intervals, and nucleation sizes, depend on the width of a
low-rigidity layer. Given the recent successes of rate and
state models in explaining several properties of repeating
earthquake sequences [Chen and Lapusta, 2009; Chen et al.,
2010], it is important to consider these additional effects for
proper interpretation of observations.

[7] In section 5, we consider the effects of stratified bulk
properties (e.g., a sedimentary basin) on simple repeating
earthquakes that rupture the entire seismogenic depth.
Fialko et al. [2005] pointed out that, for several large (M~7)
strike-slip earthquakes, coseismic slip in the uppermost
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crust is systematically lower than that at seismogenic depth.
A reduction of coseismic slip at shallow depths (<3—4 km),
referred to as ‘shallow slip deficit’, has been inferred for
several large strike-slip crustal earthquakes [e.g., Simons
et al., 2002; Fialko et al., 2005; Bilham, 2010], including
the 1992 M7.3 Landers earthquake, the 1999 M7.1 Hector
Mine earthquake, the 2005 M6.5 Bam earthquake, and the
2010 M7.0 Haiti earthquake. Several mechanisms have been
proposed to explain the shallow slip deficit, including the
presence of velocity-strengthening friction at shallow depths
that releases accumulated strain by fault creep [e.g., Marone
et al., 1991; Marone, 1998; Kaneko et al., 2008] and low
pre-stress in low-rigidity shallow bulk materials resulting
from uniform tectonic strain [e.g., Rybicki, 1992; Rybicki
and Yamashita, 1998]. Using the developed SEM, we
investigate whether a vertical strike-slip fault embedded in a
vertically stratified bulk structure can cause shallow
coseismic slip deficit without the presence of a shallow
velocity-strengthening region.

2. A Quasi-Static SEM Algorithm for Simulations
of Long-Term Deformation Histories

2.1.

[8] The SEM dynamic model presented by Kaneko et al.
[2008] relies on an explicit time updating scheme, the
approach commonly used in SEMs for wave propagation
[e.g., Komatitsch and Vilotte, 1998; Komatitsch and Tromp,
1999]. However, the explicit time scheme limits the maxi-
mum length of each time step Af by the Courant stability
condition. For dynamic rupture simulations, the Courant
condition can be rewritten in terms of the cohesive zone size
A divided by the wave speeds of the medium:

Discretized Elastodynamic Relations

CA

At < ———
VDNV, or s

(1)

where D is the dimension of the problem, C is a stability
parameter that depends only on the time scheme and is of
order one, and N is the number of fault plane node points
within the cohesive zone. (In SEM, the critical time step is
actually smaller due to the non-uniform distribution of the
Gauss-Lobatto-Legendre nodes inside each spectral element.)
N should be at least 3—5 for well-resolved simulations of
dynamic rupture in the cases with slip-weakening or weakly
rate-dependent friction laws [Day et al., 2005; Kaneko et al.,
2008; Kaneko and Lapusta, 2010]. For dynamic rupture
simulations with cohesive zone sizes of 1-100 meters, Af¢ ~
10* — 1072 s, and hence simulating tens to thousands of
years of deformation histories is not computationally feasible.
To take a longer time step, one needs to use an implicit time
updating scheme. SEMs with implicit schemes have been
used to solve elastic and acoustic wave equations [e.g.,
Ampuero, 2002; Zampieri and Pavarino, 2006; Dupros et al.,
2010]. Here we develop a quasi-static SEM with an adaptive
time stepping and merge it with the fully dynamic SEM to
simulate long-term slip histories on a rate-and-state fault.

[s] As in the work of Kaneko et al. [2008], we start from
the discretized weak form of the equation of motion in its
matrix form:

Mii = —Ku + BT, )
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Figure 1. The fault divided into two non-overlapping
surfaces I',.

where M and K are the mass and stiffness matrix respec-
tively, B is the fault-boundary matrix (described in
Appendix A), T = 7°" — 7, is the relative traction vector on
the fault, 7' is the total traction and T is the traction in the
reference static-equilibrium state. Vectors u, u, and i collect
the values of displacements, particle velocities and accel-
erations, respectively, of all the computational nodes of the
bulk mesh.

[10] In the case of quasi-static problems, equation (2)
becomes

Ku = BT. 3)

Let us decompose the displacement vector u into the values
on fault nodes, denoted by u’, and the values on nodes
within the medium, denoted by u™. Then

Kjju' + Kjpu™ = BT, (4)

K21uf —+ K22um = 0, (5)

where K;; and K;, are the parts of the stiffness matrix
corresponding to u', and K,; and K, are the parts corre-
sponding to u™. From equation (5), we have

Kzzum = *Kz]llf. (6)

Given the displacement on the fault, u’, this equation yields
the corresponding displacement field in the medium, u™.

[11] In equation (4), let us introduce f = K;u + K u™
We now write equation (4) for the fault nodes with the +
signs indicating the values of field variables on the two sides
of the fault (Figure 1):

BiTi = fi . (7)

Subtracting the minus side from the plus side, and using the
sign convention 7 = —7, = 7_, where 7. are defined with
respect to the outward normal from the fault boundary I'.
(Figure 1), we obtain

T=—(B,+B)(f, —f). (®)

Equation (6) allows to eliminate the off-fault degrees of
freedom, u™, to obtain a formulation (8) involving only the
degrees of freedom on the fault (7 and u'). This procedure is
known as static condensation or sub-structuring in compu-
tational mechanics. Because the B. matrices are diagonal,
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the expression (8) is a local relation which can be computed
node by node on the fault once the f. terms are known or
predictor values are assumed. It is convenient to rewrite
equation (8) in terms of total traction, 7°° = 7, + T

T =+ T =7 — (B +B_) '(f, —f_). 9)

Note that for the cases we consider in this study, the fault-
normal components of traction 7 remain unchanged, and
hence the fault-normal components of 7 are neglected in the
calculations.

[12] The developed quasi-static time stepping algorithm is
summarized in Appendix B. The algorithm is written in
general terms, independent of specific forms of fault con-
stitutive relations. The quasi-static algorithm is similar to
Heun’s method, which can be seen as an extension of the
Euler method into a two-stage second-order Runge-Kutta
method. While Heun’s method is usually qualified as an
explicit method, we still need to solve a large linear system
during static condensation. Hence we prefer to qualify our
algorithm as implicit. In section 2.3, we discuss the quasi-
static time updating scheme coupled with a specific form of
friction laws in more detail.

2.2. Fault Constitutive Response: Rate and State
Friction Laws

[13] The fault resistance to sliding is described by labo-
ratory-derived rate and state friction laws, which were
developed to incorporate observations of rock friction
experiments at low slip rate [Dieterich, 1978, 1979; Ruina,
1983; Blanpied et al., 1995, 1998; Marone, 1998]. For time-
independent effective normal stress &, the shear strength 7°
on the fault is expressed as

T =(5,0)

ﬁ,-l—aln((;i) +bln<629>},

where a and b are rate and state constitutive parameters with
magnitudes of the order of 0.01, ¢ is the magnitude of slip
velocity, f; is a reference friction coefficient corresponding
to a reference slip velocity &, 0 is a state variable which is
typically interpreted as the average age of the population of
contacts between two surfaces, and L is the characteristic
slip for state evolution [Dieterich, 1978, 1979; Rice and
Ruina, 1983; Ruina, 1983; Dieterich and Kilgore, 1994].
Two types of state-variable evolution laws are commonly
used in modeling:

=0

(10)

do Y
71__

i 7 (aging law), (11)

do 60, (60 :

i —Iln (I) (slip law). (12)
[14] The parameter combination a — b < 0 corresponds to

steady state velocity-weakening friction and can lead to

unstable slip, whereas a — b > 0 corresponds to steady state
velocity-strengthening and leads to stable sliding [Rice and
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Ruina, 1983; Ruina, 1983]. Throughout this article, we omit
the words “steady state” and simply refer to velocity
weakening/strengthening.

[15] In expression (10), shear frictional strength 7 is
undefined for slip velocities 6 = 0, which is unphysical. To
regularize (10) near 6 = 0, we follow the approach of Rice
and Ben-Zion [1996] and Lapusta et al. [2000] in using a
thermally activated creep model of the direct effect term a
In (6/6,) to obtain

T =(6,9)
= ag arcsinh [i exp <}M> :| . (13)
26, a
Solving (13) for ) gives
6=o(T.0)
= 26, sinh (Z,) exp (w) . (14)
ao a

This regularization produces a negligible change from
equation (10) in the range of slip velocities explored by lab-
oratory experiments; the difference in 6 at 6 ~ d, is of the order
of exp(—2fy/a) or less, and the typical value of fy/a in this
study is 40.

[16] Under slow tectonic loading, frictional instability
(i.e., an earthquake) is able to develop only if the velocity-
weakening region of the fault exceeds the nucleation size #*
[Rice and Ruina, 1983; Rice, 1993; Rubin and Ampuero,
2005]. Two theoretical estimates of the earthquake nucle-
ation size for 2-D problems are given by

*[

hag ==~ L 15

" 450b—a)’ (15)
2 p*Lb

hap == 222 16

BT r b —a) (16

where p* = 1 for mode IIT and p* = p/(1 — v) for mode II.
The estimate kg was derived from the linear stability
analy51s of steady sliding by Rice and Ruina [1983], while
hia was obtained for the parameter regime a/b > 0.5 by
Rubin and Ampuero [2005] on the basis of energy balance
for a quasi-statically expanding crack. Note that Rubin and
Ampuero [2005] gave formulae for half of the nucleation
size but we use full nucleation sizes here.

2.3. Updating Scheme: Advancing One Evolution
Time Step

[17] We have developed an updating scheme appropriate
for the rate and state fault boundary condition. Here, we
discuss how values of field variables are updated over one
evolution time step. We adopt a multistage predictor-cor-
rector strategy to solve the statically condensed problem.
Suppose that the discretized values of displacement u and
particle velocity u are known at the nth time step. To find
the values of the field variables at the (z + 1)th time step, we
perform the following steps.
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[18] 1. Predict the values of displacements on the fault u’,
based on the known values at the nth time step:

(17)

[19] 2. Solve for the displacement field in the medium
u*l) using equation (6):

*f f f
u_, =u,+Ara,

*f

Kzzll K21Un+|. (18)

n+1 -
This is solved by a preconditioned conjugate gradient
method, an iterative method for solving symmetric-positive-
definite systems of equations. The algorithm we use is based
on Hestenes and Stiefel [1952] and is summarized by
Trefethen and Bau [1997]. Because the stiffness matrix K,
is large (~10° by 10°), a direct method such as Gaussian
elimination cannot be used. Fortunately, the matrix K, is
sparse, and the product Ku is always computed at a local
elemental level as in the case of the dynamic SEM [Kaneko
et al., 2008]. This is why we use an iterative method.

[20] 3. Compute f* = K;ju¥l, + Kui® and 7% in
equation (9):

totk

Tol =To— (By +B_) (5 0 — 15 ,01). (19)

[21] 4. Determine the first prediction of the state variable,

#+1. By integrating the evolution law (11) or (12) with the
constant magnitude 6 of slip velocity 5, = u, — u, during
the time step, we obtain

8.t +£ e _5
L) s\ T

for the aging law, and

I 6 0 exp(fbt,,At/L)
0%, | = = nYn
a-£ ()

for the slip law.

[22] 5. Find the first prediction of sllp velocity &% b y
equating the magnitude of shear stress in equation (19) and
strength in equation (13). The directions of shear traction
vector T, and slip velocity vector J,,; have to coincide.
From equation (19), the traction 7X!' and f¥*,, have the
same direction. By projecting (19) onto that direction and
using equation (14), we obtain

9*n+1 = 9/1 eXp <_

(1)

6t =o(mnr 0. (22)

Using the directional cosines constructed from the com-
ponents of 7!, we obtain the components of 5%, ;.
[23] 6. Calculate the final prediction of displacement and

slip on the fault, wrs = —6,,+1, at the (n + 1)th time step by

skl At *f
U, = llfl + 7 ( u, + un+1> (23)

[24] 7. Make the correspondmg predlctlon u,’,“ﬁm of the dis-
placement in the medium using the w}#' as in step 2. This

4 of 18



B10313 KANEKO ET AL.: SEM MODELING OF LONG-TERM FAULT SLIP B10313
z SEM BIM
A periodic boundary
A ! A
off-fault distance - ' ¢ |off-fault
> X B Ny dimension
' ! Vs=3.46 km/s aCC(l)utme‘lil for
- X | w=32.0GPa [ > analytically
®|® g |7 R DR SN ) S
5 i L g ~| B
| - I 2 2| |2
1
- 2l g iF N 2l |8
R . B
£ oe £ 5
= 172 I »n 1 7] 51
& c e G =
e L]
nE BN
= - 60m N+ ! ~
Ty s \4
periodic boundary

Figure 2. 2-D models of a vertical strike-slip fault. Small repeating earthquakes at seismogenic depths
in a region indicated by a black rectangle are simulated using these models. The fault is 90-m long. Slip
evolution is computed, based on the assumed friction law, on the 45-m long central portion, and the pre-

scribed slip rate V=

2 mm/yr is imposed on the two 22.5-m long outer portions. The fault is divided into

three segments: a 19-m long central velocity-weakening (VW) patch surrounded by two 13-m long veloc-
ity-strengthening (VS) regions. By symmetry consideration, the medium across the fault boundary has
equal and opposite motion. Unless otherwise noted, the medium is assumed to be homogeneous. In
section 4, we investigate the effect of a fault-parallel low-rigidity layer of a width H and rigidity up

on seismic and aseismic slip.

involves another conjugate gradient solution, with u}] as
an initial guess.

[2s] 8. Make the corresponding prediction 7011 * and 6%
by repeating steps 3 and 4 and by replacing 6, in equation (20)
or (21) with (6, + 8%,1)/2.

[26] 9. Find the final prediction &3# and the components
of &} by repeating step 5 with Tﬁ,"lf* and 0%% instead of
o1 and 0.

[27] 10. Declare the values of 8,1, 0,41, and 7' on the
fault, and the values of displacement of the entire medium
u,1, to be equal to the predictions with the superscript
double asterisks.

[28] In steps 2 and 7, we terminate the conjugate gradient
iteration when ||[LHS — RHS||/||RHS|| < ecg = 107>, where
LHS and RHS are the left-hand side and right-hand side of
equation (18), respectively. The convergence rate in the
conjugate gradient iteration greatly depends on the type of
preconditioner. Currently, we use the Jacobi preconditioner,
one of the simplest forms of preconditioning, for the con-
jugate gradient method. For SEMs, a special preconditioner
called ‘the Schwarz method’ has been shown to significantly
increase the convergence rate for elastic problems [Lotfes
and Fischer, 2004; Zampieri and Pavarino, 2006]. Imple-
menting the Schwarz preconditioner remains a subject of
future work.

3. Implementation Example

3.1. Formulation of a 2-D Model

[29] The response of faults to tectonic loading is charac-
terized by long periods of quasi-static deformation com-
bined with short periods of fast dynamic slip. To simulate
such response, we adopt the variable time stepping proce-
dure of Lapusta et al. [2000], in which the time step is set to
be inversely proportional to slip velocity on the fault as

described in Appendix C. As a result, relatively large time
steps, a fraction of a year, are used in the interseismic per-
iods, while small time steps, a fraction of a second or
smaller, are used to simulate fast seismic slip. Note that the
efficiency of the time stepping procedure (Appendix C)
depends on the degree of the positive direct effect in the rate
and state formulation [Lapusta et al., 2000], a feature that
has ample laboratory confirmation.

[30] The updating scheme introduced in the previous
section can be merged with the explicit time stepping
scheme of the fully dynamic SEM problem (Appendix B).
The main challenge is to find proper criteria for switching
from the quasi-static implicit scheme to the dynamic explicit
scheme and vice versa. At the onset of earthquakes (or at the
end of nucleation processes), slip velocities abruptly
increase from Values much smaller than typical plate loading
rates (~107'°-10"° m/s) to coseismic values (~1-10 m/s),
and the time step progressively becomes smaller. Hence we
switch from one scheme to the other based on the values of
the maximum slip velocity. For the problems discussed
below, we switch from the quasi-static to dynamic scheme
at 5max = (0.5 mm/s and from the dynamic to quasi-static

scheme at 62 = 0.2 mmy/s. Ideally, one could formulate a
switching criterion based on the relative importance of the
inertial term in the governing equation (2). However, we
find that such quantity is numerically more unstable than the
criteria based on the values of the maximum slip velocity
(Appendix D). We confirm that the criteria we adopt here
ensures that, at the times of the switch, the inertial term in
the governing equation is much smaller (~10~°) relative to
the other terms (Appendix D) and that the results compare
well with BIM methods as discussed below.

[31] To demonstrate how the ideas outlined so far are
combined to produce long-term deformation histories, let us
consider the response of a 2-D model of a vertical strike-slip
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Figure 3. (a) Depth-variable distribution of friction parameters a and (a — b). (b) Distribution of the ratio
h*/Ax. Two theoretical estimates 4#* of the nucleation size by Rubin-Ampuero (RA) and Rice-Ruina (RR)

are shown.

fault embedded in an elastic medium (Figure 2). On the fault,
a potentially seismogenic patch borders regions steadily
moving with the prescribed slip rate V', = 2 mm/yr, as illus-
trated in Figure 2. That steady motion provides loading.
The fault motion is in the along-strike direction y, but only
variations with depth z are considered, so that the fault
behavior is described by strike-parallel slip 6(z, f), slip
velocity (or slip rate) 6(z, t) = 06(z, t)/0t, and the relevant
component of shear stress 7°°(z, £). The symmetries of the
problem allow us to restrict the computational domain to the
medium on one side of the fault (x > 0).

[32] It is convenient to express the formulae in terms of
variables (u(x, z, 1) = V1 t/2) and (iu(x, z, £) — Vp/2), in which
case T, (x, z, f) becomes independent of time and equal to
the initial stress 7, (x, z). This approach was used for the
BIM model of Lapusta et al. [2000]. For the 2-D problems
we consider here, the medium across the fault boundary has
equal and opposite motion by symmetry consideration. Then
the relation (9) on the fault becomes

() =70 =gy (K020 ) -3

Vpll‘

+Kin(y,2,1) {um(; 0 — TD (24)

Note that our mesh is conformal and hence B = B, = B_.
[33] The SEM model consists of a 90 m by 60 m rectangular
domain (Figure 2). To allow comparison to the BIM, the
domain is replicated using periodic boundary conditions on
both sides of the domain (Figure 2). The fault boundary obeys
rate and state friction with the aging law (11). The model
contains variations in steady state friction properties that
create rheological transitions (Figure 3). The parameters used
in the simulations are listed in Table 1. The effective normal
stress o and characteristic slip L are uniform along the fault.
[34] We use the criteria for spatial discretizations devel-
oped in the work by Perfettini and Ampuero [2008] and
Lapusta and Liu [2009], which showed that resolving a
cohesive zone size is a more stringent requirement than
resolving the nucleation size, for the aging formulation of
rate and state friction and typical rate and state parameters.
The spatial discretization required to resolve dynamic rup-

ture is largely sufficient for properly resolving the inter-
seismic deformation. An optimal mesh for the quasi-static
problem would involve mesh coarsening as a function of
distance from the fault. Here we do not consider such
optimization and, to avoid mapping between different
meshes, we adopt the same mesh for both the dynamic and
quasi-static problems. We discretize the domain into quad-
rilateral spectral elements with an average node spacing
Ax = 0.25 m in each element. Note that for SEMs, the
nodes are generally nonuniformly distributed, and hence
we report the node spacing in terms of their average value.
The average node spacing Ax = 0.25 m results in A,/Ax ~
uL/(baAx) = 5 where A, is the cohesive zone size at the
rupture speed ¥, — 0". Such resolution has shown to be
adequate in the work of Day et al. [2005] and Lapusta and Liu
[2009], and it leads to stable results in our simulations that do
not change due to finer discretizations. The selected spatial
discretization corresponds to 4% ,/Ax =~ 50 (Figure 3b), where
h%, is the estimate of the nucleation size obtained by Rubin
and Ampuero [2005] for a/b 20.5, see equation (16).

3.2. Comparison of Simulation Results Obtained
With 2-D SEM and 2-D BIM

[35] To assess the accuracy of numerical results, we
conduct comparison of simulation results obtained using the
developed SEM model with those of the BIM spectral for-
mulation of Lapusta et al. [2000], which resolves all stages
of each earthquake episode under a single computational
scheme. Figure 2 illustrates the geometry of the antiplane

Table 1. Parameters Used in the 2-D SEM and 2-D BIM Models
of Small Repeating Earthquakes

Parameter Symbol Value
Shear modulus I3 32.0 GPa
Shear wave speed Vs 3.464 km/s
Reference slip rate o 107¢ m/s
Reference friction coefficient fo 0.6
Characteristic slip distance L 84.0 micron
Effective normal stress T 120 MPa
Rate and state parameter a a 0.0144
Rate and state parameter b b 0.0191*

“The indicated value of b is for the velocity-weakening region in Figure 2.
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Figure 4. Comparison of earthquake sequences simulated in BIM and the developed SEM. (a) Solid
lines show slip accumulation every 0.5 years for BIM (blue) and SEM (red). Dashed lines are intended
to capture dynamic events and are plotted every 1 millisecond during the simulated earthquakes (with
Omax > 1 cm/s). Evolution of aseismic slip and seismic slip of the 2nd event are shown. Spatial distribu-
tions of slip contours in these models agree very well. (b) Shear-stress and (c) slip-velocity histories at the
center of the fault. The 2nd, 3rd, and 4th earthquake events are shown. The timings of earthquake events
in these models are nearly identical as quantified in the text, verifying our SEM implementation.

SEM and BIM models. In BIM, wave propagation is ana-
lytically accounted for by boundary integral expressions.
The method assumes the fault is repeated periodically,
which we also enforce in the SEM model.

[36] Earthquake sequences simulated in SEM and BIM
models are shown and compared in Figure 4. There are four
seismic events in the sequence. Assuming that the source
dimension is the same for the along-strike and along-dip
directions, the moment magnitude of each seismic event
is M, 1.3. The solid lines are plotted every 0.5 years and
show the continuous slow sliding (creep) of the velocity-
strengthening regions. That slow slip creates stress concen-
tration at its tip and penetrates into the velocity-weakening
region. In due time, an earthquake rupture nucleates and pro-
pagates bilaterally; its progression is shown by dashed lines.
After an earthquake arrests, the velocity-strengthening region
experiences accelerated sliding, or afterslip, due to the trans-
ferred stress. The interseismic period between two successive
events is about 6 years.

[37] The overall agreement of spatial slip distributions
between two models during coseismic as well as inter-
seismic periods verifies our developed SEM approach
(Figure 4a). The histories of shear stress and slip velocity at
the center of the fault in these models are virtually identical,
and the timing of the onset (8,,,« > 1 cm/s) of the 4th seismic
event in these models differs by 0.005% (Figures 4b and
4c). The agreement is very good given that, in the SEM
simulation, there are a total of ~40,000 adaptive time steps,
each of which includes 1 to 500 conjugate gradient itera-

tions. To make sure that the solution is accurate, we have
checked that the result of a BIM simulation with the twice
higher resolution shows identical slip patterns and timings
of seismic events, confirming that our results have con-
verged to reasonable accuracy.

[38] Figure 5 shows the evolution of the velocity fields
during the interseismic and coseismic periods in the SEM
model. About one year before the seismic event, the
velocity-weakening segment is only partly locked. About
one day before, preseismic deformation due to the gradually
accelerating nucleation process starts to show up near the
fault. About one minute before, the actively slipping region
on the fault is comparable to the eventual nucleation size
and the corresponding near-fault deformation becomes
greater. The change in strain field associated with this
deformation can be detected if a strainmeter were placed at
an off-fault distance comparable to the size of the nucleation
region. However, borehole strainmeters are generally located
near the Earth surface, and hence observations of premoni-
tory slip prior to the eventual main shock are difficult [7ullis,
1996]. The edges of the nucleation zone dynamically accel-
erate in the opposite direction, leading to bilateral rupture
during the seismic event (Figure 5b). After the seismic event
that occurred between the 4th and 5th panels in Figure 5a,
the white and yellow region gradually expands due to
afterslip on the velocity-strengthening segments of the fault.
The afterslip terminates about one year after the seismic
event and the velocity-weakening fault segment is locked
again.
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Figure 5. (a) Snapshots of the SH particle velocity field during the interseismic periods. Colors represent
particle velocity, with preseismic (i.e., nucleation) and postseismic deformation in white and yellow, the
loading rate 0.5 V), in dark red, and deformation associated with fault locking shown in black. Contours
correspond to the values of log; (velocity [m/s]). The line x = 0 corresponds to the fault. (b) Snapshots of
the velocity field every 3 milliseconds during the seismic event.

[39] Since the quasi-static scheme involves solving a large
linear system (6), interseismic deformation associated with
nucleation, afterslip, and fault creep requires much more
computational time than dynamic-rupture and wave propa-
gations do. For the problems we consider, more than 95% of
the CPU time is spent on computing the interseismic defor-
mation. Hence future work is directed toward optimizing the
quasi-static solution scheme to improve its performance.

4. Effects of a Fault-Parallel Low-Rigidity Layer
on Seismic and Aseismic Slip

[40] We use the SEM model developed in section 2 and
verified in section 3 to investigate the effects of variable

bulk properties on repeating earthquakes. The model set up
is similar to the one shown in Figure 2 except that a fault
parallel low-rigidity layer of width H and rigidity pp is
added in the vicinity of the fault, to mimic a localized
damaged fault zone. The friction-related parameters and the
distribution of effective normal stress are the same as in
section 3. We examine how earthquake source properties,
such as stress drop, recurrence intervals, and nucleation
sizes, depend on the width of the low-rigidity layer.

[41] Figure 6 shows simulated earthquake sequences for
two scenarios: a case with a low-rigidity layer (up = 20.5 GPa)
of width H = 1.5 m and the other with a homogeneous bulk
with rigidity pp =20.5 GPa (H = infinity). Note that the rigidity
ratio is pp/pt = 0.64 and the corresponding ratio of the S-wave
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Figure 6. Simulated earthquake sequences with (a) layered bulk structure with the width of a low-rigidity
layer H= 1.5 m and (b) homogeneous bulk structure with up = 20.5 GPa corresponding to H = o. Solid
and dashed lines have the same meaning as in Figure 4a. The model geometry is shown in Figure 2.

speeds is V2/V, = 0.8. As Figure 4a and Figure 6 show, the
earthquake source properties are affected by the width of the
low-rigidity layer. We further perform several simulations with
different values of H and quantify the dependence of earth-
quake source properties on H (Figure 7). In the following, we
summarize several key findings.

4.1. Reduction of Nucleation Sizes in Low-Rigidity
Fault Zones

[42] The theoretical estimates of a nucleation size given in
equations (15) and (16) predict that the nucleation size on a
planar fault embedded in a homogeneous medium is linearly
proportional to rigidity p of the medium. This is consistent
with our simulation results for the scenarios with homoge-
neous bulk (Figure 7a). To compute nucleation sizes in our
simulations we use a criterion based on rupture speed: we define
the onset of instability as the time when a tip of the actively
slipping zone moves with the speed that exceeds a fraction
(10%) of the shear wave speed of the surrounding elastic
medium [Kaneko and Lapusta, 2008]. The tips of the actively
slipping zone are found as the locations of peak shear stress.

[43] The dependency of nucleation size on fault zone
width H has two extreme regimes. The nucleation size
approaches the length #* estimated with the rigidity u of the
undamaged host rock when H is small compared to that
length. As H increases, the influence of the low-rigidity
layer on the nucleation size becomes greater. The nucleation
size approaches the length 4#* estimated with the rigidity up
of the fault zone damaged rock when H is a large fraction of
that length.

[44] In the transition between these two extreme regimes,
linear stability analysis (Appendix E) provides a theoretical
estimate of the nucleation size Af,; on rate and state faults
embedded in a simple layered medium, given as the solution
of the following equation (E3):

Hlay tanh |:H71:k + arctanh (MD>] = pEr (25)
u

hom?
lay

where AP is the estimate of a nucleation size in a homo-

geneous medium with rigidity pp. The theoretical prediction
of hfy in equation (25) obtained by setting Ajhm = AR,
where h 4 is given by equation (16), agrees fairly well with
the simulated nucleation sizes for a range of H (Figure 7a).

[45] Using friction parameters found in laboratory experi-
ments of Blanpied et al. [1995], b —a = 0.004, a = 0.01 and
L = 1-10 microns, and assuming that @ = 100 MPa at seis-
mogenic depth, the nucleation size is of the order of 0.1-1 m
based on equations (15) and (16). This suggests that a
nucleation size for natural earthquakes that occur on faults
embedded in meter-scale damaged but still cohesive rock
are controlled by the properties of the damaged rock and can
be smaller than the value estimated using the rigidity of
undamaged rocks.

4.2. Dynamic Amplification of Slip Rates and Slip
in Low-Rigidity Fault Zones

[46] As the width of a low-rigidity layer H becomes
larger, the peak slip rate of the propagating dynamic rupture
amplifies (Figure 7b). As a result, both the average and peak
coseismic slip also increases with H (Figure 7c). Between
the end-member cases with homogeneous bulk p and up,
the amplification of the peak slip rate and peak slip in
Figures 7b and 7c is about 3.0 and 2.0, respectively, larger
than the ratio of the rigidity contrast u/up = 1.56. To
understand this behavior, we consider an analytical solution
for the maximum slip rate due to a propagating shear crack
at a constant speed in a homogeneous medium. In this case,
the peak slip rate d,,.x and the rupture speed V; are related
by [lda, 1973]:

V. ATP~S
,UAlu

(26)

Omax X
where V; is a rupture speed of the propagating shear crack,
A7TP™® is the change from the peak stress to the dynamic

sliding stress (i.e., strength drop), and Ay [Vi/Vs] = (1 — V2/
72)'"2 is a monotonically decreasing universal function of V.
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We find that, in our simulations, the strength drop A7P™° does
not depend much on the rigidity p of the medium. The ratio of
the peak slip rate between damaged and undamaged fault
zone scenarios then becomes
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Figure 7. Effects of a fault parallel low-rigidity layer of width H on small repeating earthquakes. (a) The
relation between simulated nucleation sizes and H. The nucleation sizes and the widths are non-
dimensionalized by the theoretical estimate A%.°, with A% = 7.9 m for the parameters used. The solid curve
is the theoretical prediction (25), which fits the simulated nucleation sizes fairly well. (b) The peak slip rate
during a typical earthquake as a function of H. (c) The peak coseismic slip and the averaged slip over the
source as a function of H. (d) Recurrence interval between successive earthquakes as a function of H.
(e) Stress drop averaged over the region of positive stress drop as a function of H. (f) Ratio of seismic
potency Py to total potency Py, released on the velocity-weakening patch over one earthquake cycle.
(8) Peiseis/Protar s a function of the effective rupture dimension (i.e., the ratio of the rupture length to the
simulated nucleation size). The dashed line is the least squares fit to the data points. The increase of the
effective rupture dimension due to increasing H leads to the increase of P/ Pyotal and hence more seismic
slip. (h) The seismic moment per unit length as a function of H. The case with H/h%4° = 2.5 in Figures 7a—7f
and 7h corresponds to the case for a homogeneous bulk structure with up =20.5 GPa shown in Figure 6b.
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where the quantities with the superscript ‘hom’ refer to the

case for the undamaged fault zone (a homogeneous bulk).
[47] Figure 8b shows a comparison between the theoreti-

cal prediction (27) and the ratio of the simulated peak slip

rate in the damaged fault zone cases to that in the homo-

ézax _ VP Al” [Vrhom/Vs] ﬁ
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Figure 8. (a) Rupture speeds V; normalized by the S-wave speed V; of the medium adjacent to the fault
during a seismic event for the cases with a homogeneous bulk p and up and for a layered case with H =
1.5 m. Rupture speed is determined by computing average rupture speed over each spectral element (or
5 computational nodes) and plotting the obtained value with respect to the center of the element. The rup-
ture speeds become larger for a larger width / of a low-rigidity layer due to the increase in the effective
rupture dimension. (b) The peak slip rate O« shown in Figure 7b divided by that in the case for a
homogeneous bulk with 1 = 32 GPa (6h%). The ratio of the peak slip rates &ma/0iom predicted by
equation (27) is in good agreement with the ratio of the simulated peak slip rates.

during a seismic event in each case (Figure 8a) because the
slip rate and rupture speed are generally correlated. The good
agreement between the simulations and the theoretical pre-
diction in Figure 8b suggests that the higher peak slip rates are
caused by a combination of the rigidity contrast and the dif-
ference in effective rupture dimension, i.e., the ratio of the
rupture length to the nucleation size. In our models, both the
peak slip rate and rupture speed increase as the rupture pro-
pagates a longer distance (Figure 8a). Since the effective
rupture dimension is larger in the damaged fault zone due to
the reduction of the nucleation size (Figure 7a), the resulting
rupture speeds are higher. This effect further amplifies the
peak slip rate and slip in the damaged fault zone cases in
addition to the rigidity contrast. This result suggests that the
peak slip rates of small repeating earthquakes in severely
damaged and undamaged rocks may be different by an order
of magnitude and the corresponding seismic slip would
become significantly larger.

4.3. Larger Recurrence Interval in Low-Rigidity
Fault Zones

[48] Interestingly, the recurrence interval of the simulated
earthquakes increases as the width of a lower-rigidity layer
increases (Figure 7d). One may think that a smaller nucleation
size in the case with the low-rigidity bulk would reduce the
recurrence interval, but the opposite happens. To understand
this, we consider a simpler model of an earthquake sequence
with constant stress drop A7 and constant stressing rate 7. The
recurrence interval 7} in this scenario is given by T, = A7/7.
Figure 7e shows that the stress drop slightly increases with
increasing width of a low-rigidity layer due to the dynamic
amplification of slip rates. However, this effect alone cannot
fully explain the greater increase of the recurrence interval. We
find that the difference in interseismic stressing rates caused by
different rigidity of the adjacent rock contributes to the increase
of the recurrence interval. Since our model is loaded by the

back-slip motion ¥}, outside of the velocity-strengthening
fault segments and the corresponding stressing rate on the fault
strongly depends on the rigidity of the medium adjacent to the
fault plane, 7 is smaller for the lower-rigidity bulk medium.
This is why the recurrence interval is larger for the cases with
the lower-rigidity medium. Since tectonic loading is applied
quasi-statically, the dependence of the recurrence interval on
the width of a low-rigidity layer is similar to that of the
nucleation size.

4.4. Smaller Amount of Aseismic Slip in Low-Rigidity
Fault Zone

[49] To quantify the amount of the aseismic slip compared
to the seismic slip during one earthquake cycle, we compute
seismic and total potency in the 2-D model. Potency can not
be usefully discussed in the 2-D model where slip extends
infinitely, and simultaneously, along strike at any given
depth z. We therefore express potency in terms of potency
per unit length and compute it as follows:

P= / 6(z)dz,
VW patch

where P is computed over the velocity-weakening (VW)
patch.

[s0] The ratio of the seismic potency to the total potency
Pyeis/Pioa increases as the width of a low-rigidity layer H
increases (Figure 7f). This means that more seismic slip is
promoted in the bulk with the lower-rigidity layer. When H
is comparable to the source dimension (i.e., the ruptured
length), the ratio Pg.;s/P;oa1 approaches the value for the case
with a homogeneous bulk with pp. We find that the increase
of Pyeis/Prota) fOr larger H can be explained by the increase in
the effective rupture dimension, i.e., the ratio of the rupture
length to the nucleation size (Figure 7g). A smaller nucle-
ation size and the resulting larger rupture dimension for

(28)
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Figure 9. (a) 2-D SEM model of a vertical strike-slip fault. Layered bulk properties used in some sce-
narios we consider are indicated. (b) Depth-variable distribution of effective normal stress, the rate-and-
state constitutive parameters a and (a-b) over the fault segment where friction acts.

larger H leads to a smaller amount of aseismic slip over the
earthquake cycle.

[51] We note that the presence of heterogeneity in bulk
properties leads to an ambiguity in the notion of the seismic
moment. If the local, near-fault value of rigidity is used for
computing the seismic moment, then there is a sudden
change between H = 0 and a small non-zero H (Figure 7h),
due to the change in the rigidity value used. This is prob-
lematic since there is no discontinuity in a physical behavior
as H approaches 0. At the same time, the seismic moment
inferred from far-field observations of long-period waves
would reflect the value of rigidity for the large-scale,
undamaged, medium. In contrast to seismic moment, the
seismic potency (the spatial integral of slip) is an unam-
biguous quantity that has no discontinuity as H approaches
0. This consideration supports the idea that the seismic
potency is a better parameter for the characterization of the
overall size of a slip event [e.g., Heaton and Heaton, 1989;
Ben-Zion, 1989].

5. Can Vertically Stratified Bulk Structure Cause
Shallow Coseismic Slip Deficit?

[52] In this section, we further extend our analysis to the
effects of near-surface low-rigidity bulk layers and study
how these layers affect the depth dependence of slip in large
earthquakes. We model earthquake sequences on a planar
vertical strike-slip fault embedded into an elastic half-space
(Figure 9a). The setup is similar to the depth-variable model
of Lapusta et al. [2000], where friction acts in the top 24 km
of the fault and the deeper extension moves with a pre-
scribed plate rate of 35 mm/year.

[s3] The physical parameters of the simulations presented
in this work are shown in Figures 9a and 9b. The effective
normal stress & increases with depth and becomes uniform
(50 MPa) at depths greater than 2.6 km (Figure 9b). While we
adopt this effective normal stress profile for convenience, as
increasing normal stresses with depth would require adopting
higher numerical resolution, such a profile is plausible for
natural faults, due to fluid over-pressurization at depth. An early
summary of evidence supporting fluid over-pressurization

and a plausible mechanical model are presented by Rice [1992].
The constant value of normal stress with depth is consistent
with the lack of systematic depth-dependence of stress drop for
microseismicity, beyond that expected from the depth-depen-
dency of crustal rigidity [e.g., Allmann and Shearer,2007]. The
variation of friction parameters a and b with depth shown in
Figure 9b is similar to the one from Rice [1993] and Lapusta
et al. [2000]; it is derived from laboratory experiments
[Blanpied et al., 1995]. The region between 2.0 km and 14.3 km
has velocity-weakening properties. The transition from velocity
weakening to velocity strengthening at 14.3-km depth is
assumed to be associated with temperature increase with depth.
The value of L used is 8 mm, in which case the model results in
sequences of model-spanning earthquakes consistent with the
results of Lapusta et al. [2000].

[s4] We consider four different scenarios of earthquake
sequences in: (1) homogeneous bulk structure without the
shallow velocity-strengthening fault patch, (2) layered bulk
structure without the shallow velocity-strengthening fault
patch, (3) homogeneous bulk structure with the shallow
velocity-strengthening fault patch, and (4) layered bulk
structure with the shallow velocity-strengthening fault patch
(Figure 9). The layered bulk model approximately corresponds
to the 1-D Parkfield velocity structure down to the depth of
~15 km used in the study by Custodio et al. [2005]. The sce-
narios with the velocity-strengthening patch at depths less than
2.0 km (Figure 9b) are motivated by laboratory experiments in
which rock friction at low normal stress typically exhibits
velocity-strengthening behavior due to unconsolidated fault
gouge [e.g., Marone et al., 1991; Marone, 1998].

[s5s] Figures 10a and 10b show earthquake sequences
simulated in the 2-D SEM model for scenarios 1 and 2. The
solid lines are plotted every 5 years and show the continuous
slow sliding (creep) of the velocity-strengthening region at
depth. The slow slip creates a stress concentration at its tip
and penetrates into the velocity-weakening region. In due
time, an earthquake nucleates close to the transition. We show
the progression of earthquakes with dashed lines plotted
every second.

[s6] The scenarios with homogeneous and layered bulk do
not lead to shallow coseismic slip deficit in these particular
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Figure 10. Simulated earthquake sequences and event characteristics of models with: (a) homogeneous
bulk structure without the shallow velocity-strengthening fault patch, (b) layered bulk structure without
the shallow velocity-strengthening fault patch, (c) homogeneous bulk structure with the shallow velocity-
strengthening fault patch, and (d) layered bulk structure with the shallow velocity-strengthening fault
patch. Solid lines show slip accumulation every 5 yrs. Dashed lines are intended to capture dynamic
events and are plotted every 1 s during the earthquakes. (e) Seismic slip of a representative event in each
case. Low-rigidity shallow bulk materials alone do not lead to coseismic slip deficit. (f) Shear stress evo-
lution at the depth of z=—2 km for all four cases and at the depth of z=—1 km for the case 1 (Figure 10a).
Time is normalized by the recurrence interval for each case, and ¢ = 0 corresponds to the time just after the
prior seismic event.
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examples (Figures 10a, 10b, and 10e). From the evolution of
shear stress in these cases (black and black dashed lines in
Figure 10f), the stress accumulation rates in the lower-
rigidity materials during the interseismic periods are smaller
than those in the materials with higher rigidity. As a result,
the prestress on the fault within the low-rigidity materials
becomes smaller. However, as explained in section 4, the
coseismic slip rates get amplified in the low-rigidity mate-
rials, resulting in the net effect on slip being nearly zero.

[57] Inthe case where the rigidity of the shallow bulk layers
is low (Figure 10b), the rupture propagation is enhanced as
the rupture propagates into the shallow layers. Although the
absolute rupture speeds decelerate from 1.7 km/s at 5—6 km
depths to 1.2 km/s at 1-2 km depths, the rupture speeds rel-
ative to the local shear wave speed V,/V; increase from V,/V, =
0.5 at 5-6 km depths to V;/V = 0.7 at 1-2 km depths. Hence
despite the smaller prestress in the low-rigidity materials, the
rupture accelerates with respect to the local ¥ and the rupture
propagation is enhanced, consistent with the dynamic
amplification of the slip rates.

[58] The small reduction of the coseismic slip near the free
surface in scenario 1 (the black curve in Figure 10e) is caused
by minor aseismic creep. Due to this minor creep, interseismic
shear stress near the free surface in scenario 1 decreases for
some time (the green curve in Figure 10f). The occurrence of
this minor creep is related to the decrease in effective normal
stress & toward the free surface. From the theoretical estimates
of a nucleation size given in equations (15) and (16), #* is
proportional to pi/a. Since o decreases next to the free surface,
h* increases there, provided that other parameters are uniform
over depth. The larger #* near the free surface in scenario 1
promotes aseismic slip there. This consideration also explains
why scenario 2 is not similarly affected. Since rigidity p is
also smaller near the free surface in scenario 2, #* remains
relatively constant with depth, and hence the aseismic slip is
not similarly promoted in that scenario.

[s9] Figures 10c and 10d show earthquake sequences
simulated in the 2-D SEM model for scenarios 3 and 4. The
presence of the shallow velocity-strengthening patch leads
to shallow coseismic slip deficit regardless of the properties
of the bulk (red and red dashed lines in Figure 10e). As the
rupture propagates over the velocity-strengthening area, it
experiences additional resistance to slip. It still manages to
propagate all the way to the surface, driven by the dynamic
wave-mediated stress transfers, and to accumulate quite a bit
of slip. However, the slip is lower than at depth. The gra-
dient in slip keeps the stresses in the shallow part suffi-
ciently high to allow for some afterslip and interseismic
creep. Due to the interseismic creep and afterslip in the
shallow velocity-strengthening region, the stress accumu-
lation rates there during the interseismic periods are small in
both scenarios (red and red dashed lines in Figure 10f).

[60] The results here suggest that coseismic slip deficit
can be caused by the presence of a shallow velocity-
strengthening region, but not by that of low-rigidity shallow
bulk materials. In a model embedded in elastic media, the
accumulated slip is equal to the sum of co-, inter- and
postseismic slip. On velocity-weakening faults accommo-
dating little inter- and postseismic slip, the coseismic slip at
a given point has to catch up with that on the rest of the fault
plane. Hence the cancelation of the net effect of dynamic
amplification and low interseismic stress accumulation in
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Figure 10 is reasonable. The studies by Rybicki [1992] and
Rybicki and Yamashita [1998], which proposed that the
reduction of coseismic slip at shallow depths can be caused
by the presence of low-rigidity materials, did not consider
dynamic amplification of coseismic slip, even though they
considered a wider range of conditions. While exploring the
wider range of parameters may be important, our conclu-
sions should still be valid, unless certain conditions lead to
significant interseismic creep or afterslip on faults with
velocity-weakening friction.

6. Conclusions

[61] We have developed a 2-D SEM algorithm for sim-
ulating long-term histories of seismic and aseismic fault slip
on a vertical strike-slip fault embedded in heterogeneous
bulk media subjected to slow tectonic loading. Our approach
reproduces all stages of earthquake cycles from accelerating
slip before dynamic instability, to rapid dynamic propaga-
tion of earthquake rupture, to postseismic slip, and to
interseismic creep. We have set up an antiplane benchmark
problem and have verified the developed SEM approach by
comparing SEM and BIM simulation results in a 2-D model
of small repeating earthquakes.

[62] Using the developed formulation, we have investi-
gated the effects of variable fault zone bulk properties on
source properties of small repeating earthquakes. Our results
suggest that source properties of small repeating earthquakes
depend on the width of a lower-rigidity bulk (or a damaged
zone) and its rigidity value. We find that a fault bisecting a
lower-rigidity layer, compared to the one in undamaged
country rock, leads to the following changes in the properties
of earthquakes and their cycles: (1) reduction in the earth-
quake nucleation size, (2) amplification of slip rates during
dynamic rupture propagation, (3) increase in the recurrence
interval, and (4) smaller amount of aseismic slip. Note that
changes 2—4 are due to a combined effect of the presence of
the lower-rigidity layer and of the change 1.

[63] In this work, a damaged fault zone is characterized by
the region of a low-rigidity linear elastic medium. However,
the actual damage zones may differ from the undamaged rock
in other important ways, e.g. due to spontaneous generation
and healing of physical damage and the associated evolution
of elastic moduli. Such additional features may further affect
the source properties of small repeating earthquakes. The
presented SEM framework can be extended to include off-
fault inelastic deformation [e.g., Andrews, 2005; Templeton
and Rice, 2008] and spontaneous damage evolution in the
context of a continuum damage mechanics formulation [e.g.,
Lyakhovsky et al., 1997], which can be used to explore and
quantify such effect.

[64] We have further examined the effects of vertically
stratified bulk layers on the nature of shallow coseismic slip
deficit. For the set of parameters we have considered, low-
rigidity shallow bulk materials alone do not lead to coseismic
slip deficit. While the low-rigidity materials do cause lower
interseismic stress accumulation, they also cause dynamic
amplification of coseismic slip rates, with the net effect on
slip being nearly zero. At the same time, the addition of
velocity-strengthening friction to shallow parts of the fault
leads to coseismic slip deficit in all cases we have considered.
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[6s] While velocity-strengthening friction leads to the
reduction of coseismic slip near the Earth surface, there remains
a question of how the coseismic slip deficit is accommodated
throughout the earthquake cycle. The consequence of velocity-
strengthening fault friction at shallow depths is that the deficit of
coseismic slip is relieved by postseismic afterslip and inter-
seismic creep. However, several seismic events with inferred
shallow slip deficit discussed in section 1 are not associated
with either resolvable shallow interseismic creep or robust
shallow afterslip [Jacobs et al., 2002; Fialko, 2004; Fialko
et al., 2005; Fielding et al., 2009]. In such cases, the slip def-
icit in the shallow parts of the fault may be due to either smaller
shallow seismic events or distributed inelastic bulk deforma-
tion. Understanding the typical origin of shallow slip deficit
remains a subject of future work.

[66] The developed SEM methodology can be used to
study a number of fault slip phenomena that bridge the broad
spectrum of fault slip behavior, from rupture dynamics to
long-term crustal deformation. The SEM model allows for
more flexibility in fault geometry and heterogeneous and
non-elastic bulk properties in long-term simulations of fault
slip. Furthermore, while the methodology is presented using
the 2-D antiplane problem, it can be extended to the 2-D
in-plane and 3-D formulations if efficient implicit solvers for
3-D problems are constructed. The developed models would
be useful for interpreting seismic and geological data col-
lected and sampled close to structurally complex fault zones
at SAFOD and other drilling sites.

Appendix A: Fault Boundary Matrix

[67] The fault surface I" consists of quadrilateral elements
I, inherited from hexahedral elements lying on the two sides
T'. of the fault. The matrix B in (2) is a sparse rectangular
matrix obtained by assembling the contributions B, from each
of the fault boundary elements I', that are the same for the
three components of traction. The term of B, associated with
the GLL node with local indices (i, j) in I', € I', is

Bt

ij.ij = iwiijéj, (Al)

where wy; denote the weights associated with the GLL inte-
gration quadrature and

ox Ox
_><_

[/
Je o0& In

(&) (A2)

is the Jacobian of the cz:oordinate transformation from x € T,
t0&=(mel-1, 11

[6s] The outward normal vector of the fault boundary I'*
is obtained by

1 Ox Ox

n(f’")zfigxin' (A3)

Appendix B: Quasi-Static and Dynamic Time
Stepping Algorithms Used in This Study

[69] The algorithm for the dynamic scheme was discussed
by Kaneko et al. [2008] in more detail. Note that the nota-
tions used in the dynamic scheme is slightly different from
those of Kaneko et al. [2008].
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[70] Quasi-static scheme
1. Predict displacement on the fault:

u'* =u + Amf

2. Solve for displacement in the medium:
Kpu™ = —Kyjut*
3. Compute f on the fault:
f* — Kjju'™ + Kppu™
4. Compute traction on the fault:
T = 7, — (B, + B_) ' (ff — £¥)
tots

5. Compute &* from a friction law together with T
6. Correct displacement on the fault:

uf** — uf +% (uf 4 uf*)

7. Repeat 2-5 to obtain u™**, 7'°%* and §*x
[71] Dynamic scheme
1. Update displacement and partial velocity:

A
u<—u+Atl'1+Tii
. . A2
u*:u—i—Tu

2. Compute the internal forces:
f' — —Ku

3. Compute the ‘stick’ traction (equation [18] of Kaneko
et al. [2008)):

At i
afree _ e 0 Mflfl
u - ( )

- - free
T =7, +Z 6

4. Find fault traction and slip velocity satisfying a friction
law and the relation

o= — 78
5. Add the fault boundary term to the sum of internal forces:
f —f +Br
6. Solve for acceleration:
i — M
7. Complete the update of velocity:

0t 7’&1
Appendix C: Variable Evolution Time Step in 2-D
Antiplane Problems
[72] Simulations of long-term deformation histories with

periods of rapid dynamic slip (earthquakes) require time
steps that change by orders of magnitude. For the SEM with
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Figure D1. The ratio Py, of the inertial term to the other terms in the governing equation and the max-
imum slip velocity on the fault as a function of time before, during and after the simulated earthquake
shown in Figure 4. Py, is defined in equations (D1) and (D2). At the times of the switch from quasi-
static to dynamic and vice versa, the inertial term Mii is much smaller (~10~°) than the other terms in the

governing equation (2).

the implicit scheme, we adopt the time stepping scheme
developed for BIM by Lapusta et al. [2000] for a 2-D
antiplane problem. This scheme also works well for our
SEM model. Note that the maximum time step is limited by
the Courant condition and constant in the SEM with the
explicit scheme, but not in the implicit scheme (uncondi-
tionally stable). The variable time step At is chosen as:

At = max{Atmin, Aley }, (C1)
where At;, is the minimum time step, and A¢,, depends on
slip velocity at each time step. The minimum time step is set
by the Courant condition and given by

Atmin = CAxmin/Vsa (CZ)
where C = 0.6 is used in our 2-D antiplane problem. The
same condition is used for modeling single dynamic rup-
tures in the 2-D antiplane test problem of Kaneko et al.
[2008]. The time step At is set to be inversely propor-
tional to slip velocity:

Atey = min[§L; /6], (€3)
where L;, 6;, and &; are the characteristic slip, the current slip
velocity and a prescribed parameter for the ith fault node of
the discretized domain, respectively. & is a function of
friction properties from linear stability analysis [Lapusta
et al., 2000], and it is constrained to satisfy &; < &., where
£, 1s a constant, to ensure that slip at each time step does not
exceed &. L;. As in the work of Lapusta et al. [2000], we use
£.=1/2 in our 2-D SEM and BIM models.

Appendix D: Criteria for Switching Between
Quasi-Static and Fully Dynamic SEMs

[73] The quasi-static SEM formulated in section 2 can be
merged with the fully dynamic SEM [Kaneko et al., 2008].
We switch from the quasi-static to the dynamic SEM and
vice versa based on the values of the maximum slip velocity
on the fault described in section 3.1. To make sure that at the

times of the switch the inertial term is negligible relative to
the other terms in the governing equation, we define and
compute the ratio Py, of the inertial term on the fault to the

other terms at each time step:
I Mﬁeff
BT

|Mi-leff|_
Pya = max | max ,
[|Mi|
L[B|

Ku[ |

during the dynamic regime. The effective acceleration
computed during the quasi-static regime is computed as
i = (,., — u,)/At. Figure D1 shows Py, and values of
the maximum slip velocity on the fault as a function of time
before, during and after one of the simulated earthquake
events shown in Figure 4. At the times of the switch, the
inertial term Mii is negligible relative to the other terms in
the governing equation, verifying the use of our switching
criteria based on the values of the maximum slip velocity.

max

during the quasi-static regime, and

M}
|Kul]

max

(D2)

Pya = max (max {

Appendix E: Nucleation Size for a Layered
Elastic Medium

[74] We derive the theoretical estimate of a nucleation size
on rate and state faults embedded in a simple layered
medium shown in Figure 2. The static stiffness kyom for
sliding on a patch of characteristic size / in a homogeneous
elastic solid is given by [e.g., Dieterich 1992]:

ol
khom - 77 (El)
where v is a parameter of order one that depends on the
geometry of the slip patch and assumptions relating to slip
or stress conditions on the patch, and p is the rigidity.
Considering sinusoidal perturbations of slip of wavelength
h, for which v = 7, Rice and Ruina [1983] and Ruina [1983]

showed that frictional sliding with the rate and state friction
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is always stable for the perturbations of the shortest wave-
lengths, but, if the sliding surfaces have velocity-weakening
properties, then a critical wavelength exists, associated to a
critical stiffness k., such that larger wavelengths are unsta-
ble. This means that only the long wavelengths of a per-
turbation, with ko < k¢, diverge exponentially and trigger
an instability. For rate and state friction with the aging
law (11), the critical stiffness is k. = @ (b — a)/L [Ruina,
1983]. Setting k,,,c = knom and solving for the critical
size h leads to equation (15), which we denote it in this
appendix.

[75] Ampuero et al. [2002] derived an analytical expres-
sion of the static stiffness k., for sinusoidal slip perturba-
tions of wavelength # in a simple layered medium. We
slightly modify their expression by introducing a parameter
~ that accommodates more general slip modes, inspired by
equation (E1):

ktay = %ZD cotanh {2H % + arctanh (N—;)} ) (E2)

where up and p are rigidity of the low-rigidity layer adja-
cent to the fault plane and that of the undamaged host rock,
respectively, and H is the thickness of the low-rigidity layer
(Figure 2). Since k. depends only on the friction law and
effective normal stress @, k. is the same for both the homo-
geneous and layered cases. By setting khom = kiay = ke, we
obtain

hisy tanh {ZH hl* + arctanh (%)} = hifom. (E3)

lay

Given hjom, one can find h’fay by numerically solving
equation (E3). The parameter v can be determined empiri-
cally for a given model geometry. For the antiplane pro-
blems we consider here, we find that setting v = 7/4
provides a satisfactory representation of our simulation
results.
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