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Abstract How earthquake ruptures evolve and propagate are major outstanding questions in seismology.
Our current understanding is limited to modern events captured by seismic networks, making it
impossible to observe rupture propagation that occurred during earthquakes in the distant past. Here we
propose a new method to discern the rupture propagation directions of past large earthquakes based on
geological features preserved on fault slip planes. These features—called slickenlines—are striations formed
during seismic slip and record dynamic fault movement during past surface-breaking earthquakes.

We develop a theoretical framework that links slickenline curvature with rupture mode and rupture
propagation direction for all faulting types and test our model using a global catalogue of historical
surface-rupturing earthquakes with seismologically constrained rupture directions. Our results reveal that
historical observations are consistent with theoretical predictions, thus providing a robust way to uncover the
rupture directions of large earthquakes that lack instrumental data.

Plain Language Summary How earthquake ruptures evolve and propagate are major outstanding
questions in seismology. Currently, we are unable to observe the details of earthquakes that occurred in

the distant past, which limits our understanding to events recorded by modern technology. Here we propose a
new method to uncover the rupture propagation direction of past large earthquakes, using geological
features preserved on faults scarps. These features—called slickenlines—are scratch marks that form when
two sides of a fault move past one another during an earthquake. We develop a theoretical framework

that links the geometry of slickenlines with rupture propagation direction for all types of faults and test

our model using a global catalogue of surface-breaking earthquakes. Our results reveal a strong link between
our model and the available data, providing a new way to uncover the rupture direction of large earthquakes
that are not recorded by modern seismic instruments.

1. Introduction

Extracting information about earthquake rupture dynamics from geological records remains one of the
grand challenges in earthquake science. Striations on fault surfaces (referred to as slickenlines) are com-
monly documented in the field after surface-breaking earthquakes (Avagyan et al., 2003; Kearse et al., 2019;
Otsubo, Shigematsu, et al., 2013; Shimamoto, 1996; Slemmons, 1957; Spudich et al., 1998; Xu et al., 2013)
and form when one side of a fault scratches against the other during earthquake displacement. As such,
slickenlines record the history and direction of coseismic slip and represent an important geological archive
of dynamic faulting during past earthquakes.

However, inferring fault kinematics from the shapes of slickenlines is not straightforward because most
documented slickenlines (~70%) from surface-rupturing earthquakes are either curved or misaligned with
slip directions obtained using nearby offset features (Table 1). This kinematic mismatch appears to indicate
that the direction of fault slip can change during the course of a single rupture (rapid temporal changes in the
direction of fault movement during seismic slip) (Avagyan et al., 2003; Kearse et al., 2019; Otsubo, Shigematsu,
et al., 2013; Shimamoto, 1996; Slemmons, 1957; Spudich et al., 1998; Xu et al., 2013). Although curved slick-
enline observations are widespread, the underlying cause for these changes is not yet clear. Previous interpre-
tations of curved slickenlines have relied on complex and event-specific mechanisms, including the influence
of a residual stress field due to a previous event nearby (Otsubo, Shigematsu, et al., 2013), cumulative slip of
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Table 1
Historical Earthquakes for Which There are Documented Slickenline Observations
Slickenlines
Earthquake Mag Mechanism Max slip (m) (SS) = supershear Reference
1915 Pleasant Valley, United States 6.8 N 8.2 Linear Jones (1915)
1937 Thuosou Lake, Tibet 7.5 SS-L 5.2 Linear Guo et al. (2007)
1954 Fairview Peaks, United States 7.0 N SS-R 5.2 Curved Slemmons (1957)
1957 Gobi-Altai, Mongolia 8.1 SS-L 7.0 Curved Florensov and
Solonenko (1965)
1959 Hegben Lake, United States 7.1 N 5.4 Linear Witkind (1962)
1969 Pariahuancha, Peru 6.2 R 1.8 Curved Philip and Megard
1977)
1974 Izu-Hanto-Oki, Japan 6.9 SS-R 1.0 Curved Kakimi and Kinugasa
(1977)
1980 El Asnam, Algeria 7.1 R 6.5 Curved Philip and Meghraoui
(1983)
1983 Borah Peak, United States 7.0 N 4.0 Linear Crone et al. (1987)
1988 Tennant Creek, Australia 6.7 R 2.5 Unspecified Crone et al. (1992)
1988 Spitak, Armenia 7.0 R 22 Curved Avagyan et al. (2003)
1992 Landers, United States 7.3 SS-R 6.7 Curved Arrowsmith and
Rhoades (1994)
1995 Neftegorsk, Russia 7.6 SS-R 8.1 Curved Shimamoto (1996)
1995 Kobe, Japan 7.2 SS-RR 2.5 Curved Otsuki et al. (1997)
1999 Hector Mine, United States 7.1 SS-R 5.2 Linear Treiman et al. (2002)
1999 Chi-Chi, Taiwan 7.6 R SS-R 16.4 Linear Lee et al. (2003)
2001 Kunlun, Tibet 7.8 SS-L 16.3 Linear (SS) Lin et al. (2002)
2002 Denali, Alaska 7.9 SS-R 8.8 Curved Haeussler et al. (2004)
2008 Wenchuan, China 8.0 R SS-R 13 Curved Pan et al. (2014)
2010 El Mayor-Cucapah, Mexico 7.2 SS-R 3.9 Curved Fletcher et al. (2014)
2011 Fukushima, Japan 6.6 N 2.0 Curved Otsubo, Shigematsu,
et al. (2013)
2016 Kaikoura, New Zealand 7.8 SS-R 11.9 Curved Kearse et al. (2018)

Note. N, normal; SS-L, strike-slip left lateral (sinistral); SS-R, strike-slip right lateral (dextral); R, reverse. Combinations of these refer to strongly oblique earth-
quake mechanisms. Modified from Kearse et al. (2019).

two discrete rupture episodes with different slip directions (Avagyan et al., 2003), and complex stress
interactions near the junctions of intersecting faults (Xu et al., 2013).

A different view of curved slickenlines (Spudich et al., 1998) based on the theory of earthquake mechanics
suggests that temporal changes in slip direction may instead be driven by dynamic stress changes on the slid-
ing fault surface. This interpretation has led to the hypothesis that slickenline curvature could preserve the
rupture propagation direction of past earthquakes (Figure 1a) (Kearse et al., 2019). Since rupture direction is
an important parameter for our understanding of earthquake dynamics (Andrews & Ben-Zion, 1997; Harris
& Day, 2005) and seismic hazard (Gerstenberger et al., 2020; Somerville et al., 1997), the ability to uncover
the rupture direction of large historical earthquakes would help address related questions, including
whether elastic contrasts across bi-material faults (Andrews & Ben-Zion, 1997) or locked-to-creeping transi-
tions (Barbot et al., 2012) exert first-order controls on the direction of rupture propagation. However, a uni-
fying theory linking curved slickenlines with rupture propagation direction remains undeveloped.

Here, we establish a theoretical link between rupture propagation direction and slickenline curvature using
models of spontaneous dynamic rupture. We compare our findings with a catalogue of curved slickenlines
from large historical earthquakes (M, > 6.5) whose rupture directions are known from independent seismo-
logical data, to test whether slickenline curvature is controlled by the location and rake of the source mechan-
ism and therefore whether it may be used to infer the direction of rupture propagation during past
earthquakes.

2. Model Setup

To study the relationship between curved slickenlines and rupture direction, we consider idealized
end-member fault kinematics. We keep our dynamic rupture models as general as possible by simulating

KEARSE AND KANEKO

2 0f 19



-~
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Solid Earth

10.1029/2020JB019863

(a)

DEXTRAL SLP

e

*

d

.

’
’

e

ﬁ/

-

(b) r=

)

SIMSTHRAL SLP

*/)

d —tf—

’
.
’
7

’
’

% W

@

—

curved slip path

NOFMAL SLIP

enscribed on footwalll< (d)

o
Hypocentre *
)Zf} < ,

; ] / :
’ ’ ¢
’

7 rz

1)

curved slip path

enscribed on™ |
hanging-wall

/

C

X

Figure 1. Curved slickenlines expected to form during surface-breaking earthquakes. For continuity, slickenlines are presented from the point of view of a
geologist collecting data in the field. Yellow curved arrows represent motion of the near side of the fault relative to the far side; opposite is true for the black
curved arrows. (a) Curved slickenlines expected to form on dextral strike-slip free faces. The sense of convexity (e.g., convex-up or convex-down) is related to the
direction of rupture propagation, after Kearse et al. (2019). (b) Curved slickenlines expected to form on sinistral strike-slip free faces. (c) Curved slickenlines
expected to form on normal fault free faces, with view toward the footwall. (d) Curved slickenlines expected to form on reverse fault free faces, with view toward
the hanging wall. The sense of slickenline convexity (e.g., convex toward the hypocenter) is related to the direction of rupture propagation.

rupture on 2D Andersonian strike-slip (Figure 2a), normal (Figure 2b), and reverse faults (Figure 2c) each
embedded within a 3D homogeneous elastic medium. Assigned wave speeds are 5.7 (P wave) and 3.3 km/
s (S wave), and density is set to 2,700 kg/m3. Normal stress and shear stress magnitudes are uniform
along strike but increase linearly with depth (Figure 2 and Table S1). The constitutive response of each
fault is governed by a linear slip-weakening friction law (Ida, 1972; Palmer & Rice, 1973), in which the
shear strength of the fault linearly decreases from its static value 15 to a dynamic value t4 over a
characteristic slip distance Dc. We assume that the slip velocity vector is parallel to the shear traction
vector at each instant in time at all fault node points (Bizzarri & Cocco, 2003).

We assume that the time-independent effective normal stress o = pgz (1 — 1) = 7.4z (MPa), where g is grav-
ity, z is down-dip distance in kilometer, and A = 0.73 is the fluid pressure ratio (Harris et al., 2018). For sim-
plicity, friction parameters (us, pud, Dc) are assumed to be uniform over the fault plane. To suppress free
surface-induced supershear ruptures that are not evident in real earthquakes, we further assume that fric-
tional cohesion C is a piecewise linear function of depth and C = 2.0 MPa from the Earth surface down to
5-km depth and C = 0 MPa at greater depths. We vary friction and stress parameters in our models to test
whether the sense of slip-path convexity depends upon these criteria.

The fault is initially at rest, and dynamic rupture is initiated by imposing a smooth, time-dependent growth
of the rupture front within a 3-km nucleation patch located at 7.5-km down-dip distance at the center of the
fault (solid black circles in Figure 2). The details of the nucleation procedure are described in benchmark
problem TPV22 (Harris et al., 2018) (link: http://scecdata.usc.edu/cvws/). Once the rupture nucleates, it pro-
pagates spontaneously outside the nucleation patch. The numerical code we use is based on the spectral
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Figure 2. Andersonian fault models used in this study. (a) Sinistral

strike-slip fault. (b) Normal fault. (c) Reverse fault. Solid black circles
represent site of dynamic rupture nucleation. Dark gray area represents

rupture region, and light gray area represents a strong barrier that arrests

dynamic rupture. Inset shows the initial stress conditions on the fault
surface.

element method (Ampuero, 2002; Kaneko et al., 2008), which has been
verified through a series of community benchmark exercises (Harris
et al., 2009, 2018).

3. Results

3.1. Dynamic Rupture Simulations

A series of snapshots of the three Andersonian dynamic rupture models
are shown in Figures 3 (normal fault), 4 (reverse fault), and 5 (strike-slip
fault). The left-hand panels within each figure illustrate the evolution of
slip rate in m/s, while the right-hand panels show the evolution of instan-
taneous slip direction in degrees.

Our simulations demonstrate a systematic pattern of slip-path curvature
that is linked to the direction of rupture propagation (Figure 6). We find
that the mechanism proposed previously (Guatteri & Spudich, 1998;
Spudich et al., 1998) is responsible for slip-path curvature: dynamic stres-
ses generated within the process zone of a propagating rupture front pro-
duce temporal changes in slip direction. In this mechanism, dynamic
stresses generated at the rupture tip induce transient stresses on the fault
surface that are not aligned parallel to the initial shear traction direction
and which are large enough to drive temporal changes in the direction
of coseismic slip. Importantly, this only occurs along mixed-mode rupture
directions (Andrews, 1994)—that is, along parts of the rupture tip where
slip has components both perpendicular and parallel to the local rupture
front (e.g., Figure 6a). Pure mode II (slip perpendicular to rupture front)
or mode III (slip parallel to rupture front) rupture directions represent
boundaries between adjacent mixed-mode domains (Figure 6). In particu-
lar, as a mixed-mode rupture approaches the Earth's surface (e.g.,
Figure 4), slip directions within the process zone begin to deflect away
from prestress directions by <60°.

Although this process occurs across the entire width of the fault, it is enhanced near the free surface where
confining stresses are always low relative to those at seismogenic depths (Figure 7a).

For dip-slip cases (Figures 6b and 6c), this transient change in rake angle introduces a component of
strike-slip that is opposite in direction on either side of the hypocenter—dextral on one side (red colors)
and sinistral on the other (blue colors). Dynamic strike-slip rupture (Figure 6a) produces transient compo-
nents of vertical slip near the free surface that are either near-side up (blue colors to the right of hypocenter)
or near-side down (red colors to the left of hypocenter). As further slip accrues, rake angles in all simulations
rotate back toward the prestress direction, resulting in curved slip paths whose convexity points toward the
hypocenter for both normal and reverse fault rupture and is either convex-up or convex-down for strike-slip
rupture. Because distinct slickenline geometries are produced by specific rupture directions, they have the
potential to preserve the direction of earthquake rupture propagation, independent of seismological data.

Earthquakes rarely involve pure dip-slip or pure strike-slip. As such, we also examine the effects of oblique
prestress rake angles on the convexity of slip paths and on any along-strike variability in slip-path geometry
(Figure 7b). To demonstrate the effects of obliquity, we change the rake angle of prestress in our normal fault
model from —90° to —110°. In contrast to pure normal faulting (e.g., Figure 6b), the mode II boundary is not
vertically aligned in oblique faulting simulations (Figure 7b). Due to the imposed clockwise rotation of the
prestress rake angle, the mode II boundary between transient dextral-normal (red colors, Figure 7b) and
sinistral-normal slip (blue colors, Figure 7b) at the free surface is shifted to the right of the hypocenter. As
a result, this side of the fault (x = 10 km) experiences a reduced component of mixed-mode rupture as it
is closer to the mode II boundary, producing only subtle slip-path convexity, whereas the left side of the fault
(x = -10 km) receives rupture that is strongly mixed-mode (approximately equal components of slip perpen-
dicular and parallel to the rupture rupture) and exhibits more pronounced slip-path convexity.
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Figure 3. Snapshots of dynamic rupture for a 60° dipping normal fault. Left-hand panels show evolution of slip rate in m/s at selected time steps. Right-hand
panel shows instantaneous slip direction for corresponding time steps.

To assess the reliability of our results, we prescribe within our simulations different friction parameters,
initial stresses (weak vs. strong fault), and stress-drop magnitudes (Table S1). Although some parameter
choices result in sharper slip-path convexity overall than others, the along-strike pattern (e.g., Figure 1)
remains unchanged. Our results suggest that the underlying physical mechanism responsible for slip-path
convexity during earthquake faulting is a robust feature that is independent of model assumptions, at least
for plausible ranges of parameters.

3.2. Comparison With Historical Earthquakes

Here we test whether the theoretical relationship between dynamic rupture propagation and slip-path cur-
vature applies to real earthquakes by compiling historical field observations of curved slickenlines, seismo-
logically determined hypocentral locations, and focal mechanisms. Out of ~60 earthquakes with geologically
documented surface rupture, we identify eight events for which all the necessary ingredients to test the
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Figure 4. Snapshots of dynamic rupture for a 30° dipping reverse fault. Left-hand panels show evolution of slip rate in m/s at selected time steps. Right-hand
panel shows instantaneous slip direction for corresponding time steps.

model are available (i.e., curved slickenlines, hypocenter location, and focal mechanism). These eight
earthquakes, introduced below, occurred in different tectonic settings, with a variety of faulting types and
magnitudes. Below, we summarize each event, including the relevant geological and geophysical data. We
find that both slickenline convexity and rupture propagation direction in each of the eight earthquakes
are matched by the results of our simple models.

3.2.1. 2011 M,, 6.6 Fukushima, Japan

The Fukushima earthquake produced 14 km of surface rupture on the southwest-dipping Itozawa normal
fault and 16 km of surface rupture on the adjacent southwest-dipping Yunodake normal fault (Mizoguchi
et al., 2012) (Figures 8 and 9a). Seismological studies (Tanaka et al., 2014; Toda & Tsutsumi, 2013) suggest
that the earthquake nucleated near the southeast tip of the Itozawa fault at 5-km depth and propagated
northwest along it. According to the analysis of Tanaka et al. (2014), as the rupture approached the
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Figure 5. Snapshots of dynamic rupture for a 90° dipping sinitral fault. Left-hand panels show evolution of slip rate in m/s at selected time steps. Right-hand
panel shows instantaneous slip direction for corresponding time steps.

northwest end of the Itozawa fault, it appears to have triggered a southeast-directed rupture on the
sub-parallel Yunokade fault located <5 km to the east (Figure 8).

Vertical slip and scarp height at the surface trace of the Itozawa fault reached 2 m and exposed many striated
free faces (Mizoguchi et al., 2012). Many slickenlines were documented—most of which were curved—and
their convexity was consistent at all sites; curved slickenlines were convex toward the hypocenter
(Figures 9a and 10a) (Otsubo, Shigematsu, et al., 2013). On the Yunodake fault, scarps were <1 m in height.
Near the southeastern end of this fault rupture, linear slickenlines pitching toward the northwest at an angle
of 60° were observed (Figure 8) (Mizoguchi et al., 2012), which describes dextral-normal slip on the
southwest-dipping fault. These slickenlines can be traced to within a few centimeters of the top of the scarp,
suggesting that they were formed early in the rupture. Yet the horizontal offset recorded by piercing points at
this site was 20 cm in a sinistral sense. This implies that the direction of slip on the Yunodake fault changed
during the earthquake; initial dextral-normal slip (recorded by slickenlines) was followed by a change to
sinistral-normal slip (not recorded by slickenlines). The convexity implied by these observations on the
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We simulate a lack of free surface by nucleating the rupture 20 km deeper,
while maintaining the same stress and friction conditions as the equivalent
simulation shown in Figure 6b. (b) Normal fault with 60° dip and an
oblique prestress rake angle of -110°. The oblique prestress direction
increases the mixed-mode component of rupture at the surface between

x = -10 km and x = 0 km, while reducing it between x = 0 km and

x = 10 km. This is reflected in the convexity of the resulting slip paths. Note
that subtle rake changes along mode II direction represent boundary
artifacts.

Yunodake fault is opposite in direction to the convexity of slickenlines
seen on the Itozawa fault (Figure 8). According to our model results, this
is consistent with the proposed opposite direction of rupture propagation
on both faults (e.g., Figures 9 and 11a). For simplicity and continuity
between the eight historical earthquakes shown in Figures 9 and 10, we
show only the primary observations on the Itozawa fault.

3.2.2. 1995 M,, 7.2 Kobe, Japan

The Kobe earthquake of January 1995 ruptured a series of strike-slip faults
near Osaka Bay, Japan, over a combined length of ~50 km (Yoshida
et al., 1996). The rupture nucleated at 12-km depth at the junction of
Nojima and Suma faults and ruptured bilaterally, extending ~20 km
southwest along the Nojima fault where it produced surface slip of up to
2 m and ~30 km to the northeast on the Suma, Suwayama, and
Gosukebashi faults underneath Kobe city where it did not rupture the
ground surface (Yoshida et al., 1996) (Figure 9b).

At several sites southwest of the hypocenter on the Nojima fault, overhan-
ging free faces were observed with curved slickenlines showing clear tem-
poral changes in slip direction (Figures 9b and 10b) (Otsuki et al., 1997;
Spudich et al., 1998). The slickenlines pitch toward the northeast and
describe initially reverse-dextral displacement that changes to become
mainly strike-slip, resulting in a convex-down geometry consistent with
our model (Figure 11b).

3.2.3. 2010 M,, 7.2 El Mayor-Cucapah, Baja California

This event nucleated in the center of what would become a 120 km long
northwest-southeast oriented bilateral rupture on the border between
United States and Mexico. Northwest of the hypocenter, surface rupture
extended ~60 km along several northeast-dipping oblique strike-slip-
normal faults in the Sierra Cucapah Mountains, with surface slip magni-
tudes reaching 3-4 m (Fletcher et al., 2014; Wei et al., 2011). The focal
mechanism reported in Wei et al. (2011) shows pure dextral strike-slip
with a rake close to —180° for this part of the earthquake sequence.
Southeast of the hypocenter, rupture propagated ~60 km across the
Colorado River delta, where it produced minimal and discontinuous sur-
face rupture (Fletcher et al., 2014; Wei et al., 2011).

Curved slickenlines were documented 16 km northwest of the hypocen-
ter on a northeast-facing scarp of the Pescadores fault—the most struc-
turally simple part of this earthquake rupture (Figures 9c and 10c)
(Fletcher et al., 2014). Here surface slip magnitudes were 3.4 m dextral
and 0.65 m vertical (hanging wall downthrown). Curved slickenlines
~1.2 m long can be seen on the lower portion of the scarp, which have
a convex-down geometry, consistent with our model (Figure 11b).

3.2.4. 1995 M,, 7.0 Neftegorsk, Sakhalin Island

The Neftegorsk earthquake produced a 35 km long, north-trending surface rupture on the steeply dipping
strike-slip Upper Pil'tun fault (Shimamoto, 1996) (Figures 9d and 10d). The epicenter was located ~5 km
south of the southern tip of surface break, and rupture propagated exclusively toward the northeast
(Katsumata et al., 2014). The focal mechanism of this event is close to pure strike-slip with a rake angle of
—178° (United States Geological Survey [USGS] catalogue). The average dextral displacement at the surface
trace was 3.8 m while vertical slip was mostly less than 1 m (Shimamoto, 1996).

Eight kilometers north of the southern tip of the rupture trace, linear slickenlines pitching ~45° to the
southwest were documented on a ~1 m high, southeast-facing vertical free face (Shimamoto, 1996). These
observations suggest that the corresponding lateral slip at this site would also have been ~1 m; however, pier-
cing points record dextral displacement of 3.8-4.4 m. As such, the direction of coseismic slip must have

KEARSE AND KANEKO

9 of 19



A5G
ADVANCING EARTH
AND SPACE SCIENCE

Y, Journal of Geophysical Research: Solid Earth

10.1029/2020JB019863

dip = 60°

% 0.5m )
N N, [/
% (4 1
S ‘/ﬁ(\rupture direction
T N\
3 - nucleation of
__ triggered rupture
dip angles Data from 9 P
>65° \I Otsubo et al.
(2013)
| 5 km I
\ coseismic
surface rupture N
\rupture direction slickenline
\ - observations

Sﬁ\7Hypocentre (JMA)

Figure 8. Map of surface faulting and direction of rupture propagation

associated with the 2011 My, 6.6 Fukushima earthquake, Japan. Surface rup-

ture traces are from Mizoguchi et al. (2012). Inferred directions of rupture pro-

pagation (red arrows) on each fault are from Tanaka et al. (2014).

changed during the rupture. As there were no horizontal striae
observed on this scarp, we infer the following evolution of slip at this
site: initially, slip was parallel to the observed slickenlines and was
characterized by near equal amounts of strike-slip and dip-slip, pro-
ducing a scarp close to 1 m high (Figure 10d). Later, the direction
of slip changed to become nearly pure strike-slip, and the remaining
~3 m of dextral displacement was accomplished (Figures 9d and 10d).
The part of the fault plane that was exposed during the initial stage of
slip would be unable to record later strike-slip motion, as it would no
longer be in contact with the other side of the fault. As such, any
striae formed during this latter, strike-slip part of the rupture would
be concealed on the fault plane beneath the ground surface. The
curve of this slip path is convex-down and is consistent with our
model (Figure 11b).

3.2.5. 1954 M, 7.1 Fairview Peak, United States

The Fairview Peak earthquake produced surface faulting on several
east-dipping normal faults within the Basin and Range, including
32 km of rupture on the Fairview fault (Caskey et al., 1996;
Slemmons, 1957). The earthquake nucleated at 12-km depth near
the center of the Fairview fault and ruptured bilaterally, extending
~18 km to the southwest and ~14 km to the northeast (Figures 9e
and 10e). The focal mechanism for this earthquake represents
normal-dextral slip with a rake of —160° (Doser, 1986). Surface offsets

showed a significant component of normal slip, with peak vertical displacements of 3.6 m (Caskey et al., 1996;
Slemmons, 1957). In his post-earthquake geological report, Slemmons (1957) noted that slickenlines on free
faces of the Fairview fault showed lower rake angles near the top of the scarp and steeper rake angles near
the base, suggesting that “... the waning moments of movement were characterised by more nearly dip-slip

components of movement.”

Furthermore, he provides quantitative details from a location where he observed considerable discrepancy
between the rake angle of slickenlines (yellow line in Figures 9e and 10e) and the overall direction of coseis-
mic displacement recorded by piercing points at the same site (blue vector is Figures 9e and 10e). These
observations both support the interpretation that slip started out as normal-dextral strike-slip and later in
the rupture changed direction to include an increasing component of dip slip. The convexity of the slip path
is convex-up and is consistent with our model (Figure 11c).

3.2.6. 1988 M 6.9 Spitak, Armenia

The Spitak, Armenia, earthquake produced a discontinuous surface rupture trace along the northeast-dipping
Alavar reverse fault (Philip et al., 1992). The most prominent surface break was characterized by a con-
tinuous, 10 km long and ~1 m high reverse fault scarp with its southeast tip located near the town of
Spitak (Dorbath et al., 1992). The earthquake nucleated at 5-km depth near Spitak and propagated bila-
terally, with peak surface displacement (1.6 m vertical, 0.9 m dextral) located to the northwest of the
hypocenter in the middle of the 10 km long rupture segment (Figures 9f and 10f) (Dorbath et al., 1992).

At the site of maximum surface slip, the rupture trace consisted of an overhanging free face decorated with
slickenlines (Figures 9f and 10f) (Avagyan et al., 2003). Two main sets of linear slickenlines were observed to
overlap one another, each raking at ~45° in opposite directions. These two sets of striae described initial
sinistral-reverse, followed by dextral-reverse displacement during the earthquake (Avagyan et al., 2003).
The authors interpreted these observations as the results of two separate rupture fronts (during the single
M; 6.9 earthquake), each with different slip directions. However, we suggest that these two sets could have
been formed during a single slip episode (Figure 9f). Under this interpretation, the convexity of the curved
slip path is toward the hypocenter and is consistent with our model (Figure 11c).

3.2.7. 2016 M,, 7.8 Kaikoura, New Zealand

This event produced surface fault rupture on >20 faults in the northeast of South Island, New Zealand
(Hamling et al., 2017; Litchfield et al., 2018). Despite the complex pattern of surface rupture, the rupture pro-
pagation was dominantly unilateral; the earthquake propagated northeast for ~200 km (Ando &

KEARSE AND KANEKO

10 of 19



A7
NI
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Solid Earth 10.1029/2020JB019863

(@)

1m (b) ——coseismic syrface

Net 2 - \

2/// offset . slip distribution

== fault dip

L
: ~_ slickenline angle

e /’_’//\”—\ g observations - A\ /&

v/ 2011 Mw 6.6 ARRWWNT2 T )
Fukushima, Japan 5 -80° /4 Kobe, dapan rake of focgl mech.
Normal o e Dexiral 1 1600\ \ " oW
=77 /.= kmdown dip_~ " hypocenten\>"
~€—— North ™ 14 km — South —>» <—I NEth__j)«(km SW —>
1m eng
(©) a- i ((110) of rupture

let Ne
Slip QM\\V\M\ Slip 5 -
n o (m) 0

Strike -slip

El-Mayor Cucapah,l BajaCalifornia

| Stxike-s\p

/ ' AQQD Ws T & Neflegorsk Russia

~€— South = 60 km —— North —>

1m >,
() /

&/ 7954 Mw 7.1

Fairview Peak U.S.
Oblique dextral

0.,
AR s © %
2\ SohRK, Nmer\\a N “g
Oblgue reverse 5,135° y\aﬂg‘

~€—— South — 32
0.1m

10 km —— SE —>
2m

PV

km —— North —>» <—N\N
0.25m 1m

\v; 150 N
(m) 0
50°
19, 152° 00BN TR J
A Nencnuan, Cana \
20716 Mw 7.8 f coo o\ N Qbligue reverse % g“\g\l\l
Kekerengu Fault New Zealand N
~€——— NE —— 27 km SW—> ~€—— SW—— 275 km —— NE —>

Figure 9. Comparison of earthquake data and model framework. Mixed-mode quadrants (gray and white) on fault planes are separated by mode II (solid gray
line) and mode III rupture directions (dashed gray line). Blue slip vectors adjacent to slickenline data represent piercing point offsets at each corresponding
site. (a) 2011 My, 6.6 Fukushima earthquake, Japan (Mizoguchi et al., 2012; Otsubo, Shigematsu, et al., 2013). (b) 1995 My, 7.2 Kobe earthquake, Japan
(Otsuki et al., 1997; Spudich et al., 1998). (c) 2010 M, 7.2 El-Mayor Cucapah earthquake, Baja California (Fletcher et al., 2014). (d) 1995 M 7.6 Neftegorsk
earthquake, Russia (Shimamoto, 1996). (¢) 1954 M, 7.1 Fairview Peak earthquake, Nevada (Caskey et al., 1996; Slemmons, 1957). (f) 1988 Mg 6.9 Spitak
earthquake, Armenia (Avagyan et al., 2003; Philip et al., 1992). (g) 2016 M, 7.8 Kaikoura earthquake, New Zealand (Kearse et al., 2018). Coseismic net slip data
for this earthquake are not shown due to the scale of the offsets. For simplicity, we only show the Kekerengu fault. Rupture propagated from southwest to

northeast. (h) 2008 My, 7.9 Wenchuan
two sites.

earthquake, China (Pan et al., 2014; Perrin et al., 2016). We were unable to obtain coseismic net slip data for the northern

Kaneko, 2018; Kaiser et al., 2017) and produced large dextral displacements of up to 12 m on the Kekerengu
fault located near the northeast tip of the rupture (Kearse et al., 2018).

Curved slickenlines were observed (Kearse et al., 2019) at multiple sites on the Kekerengu fault (Figures 9g
and 10g). These slickenlines described a curved slip path, whereby the displacement was initially
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(Pan et al., 2014).

reverse-dextral and later transitioned to become nearly pure strike-slip, describing a convex-up geometry
that is consistent with our model (Figure 11b). At two locations on the Kekerengu fault, slickenlines with
a convex-down geometry were observed. However, these two locations were associated with sharp bends
in the surface rupture trace and reversals in the sense of throw on the fault, suggesting that these
structural complexities overwhelmed the dynamic effects discussed here (Kearse et al., 2019).

3.2.8. 2008 M,, 7.9 Wenchuan, China

The Wenchuan earthquake initiated near the town of Yingxiu and ruptured unilaterally toward the north-
east, generating ~230 km of surface rupture (Xu et al., 2009). Slip measured at the surface trace shows
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considerable variation along strike: dextral-reverse near the epicenter and
mainly dextral toward the northeast (Xu et al., 2009).

Curved slickenlines were observed at two locations: ~40 km along strike
from the hypocenter near Bajiaomiao and ~150 km along strike from
the hypocenter at Beichuan (Pan et al., 2014) (Figures 9h and 10h). The
surface rupture trace near the Bajiaomiao site is structurally complex.
This site is located between a bifurcation of the Yingxiu-Beichuan fault
to the south and a 90° “T” junction with the oblique sinistral
Xiaoyudong fault <5 km to the north (Pan et al., 2014). Here, two overlap-
ping sets of curved slickenlines were observed. One set (generated first,
according to the detailed interpretation of Pan et al, 2014) is
convex-down and steeply pitching (70-80°), and the other (generated
later) is moderately pitching (30-50°) with a convex-up geometry
(Figures 9h and 10h). At the Beichuan site, the surface rupture trace is
structurally simple. Multiple exposures of curved slickenlines are
observed here and all show the same geometry. Slickenlines initially pitch
10-30° to the southwest and then steepen to ~50°, describing a convex-up
slip path similar to the second set of slickenlines seen at Bajiaomiao, and
which are consistent with our model (Figure 11c).

4. Discussion and Conclusions

The correlation between our models and the historical observations
exposes an underlying simplicity within the available earthquake data
despite the apparently complex geometries of documented slickenlines.
The sense of slickenline convexities is determined by the location and
rake of their earthquake source mechanism and is generated by dynamic

stresses within the process zone of the propagating rupture (Figures 6 and 9). It follows therefore that on-
fault, geological observations of this type can be used to reveal the direction of rupture propagation.

4.1. Unearthing Slickenlines

In practice, to identify rupture direction from curved slickenlines would require observations at one or more
sites along the surface trace of a fault that has sustained a ground rupturing earthquake in the past.
Subaerially exposed slickenlines (i.e., those seen on exposed fault plane surfaces) formed within soft fault
gouge are generally ephemeral features; fault trenching to expose fresh slip surfaces at shallow depth is
therefore likely to provide the most useful data, especially if the fault under investigation has not ruptured
the surface for decades or more. Traditionally, earthquake trenching efforts have focused on sites likely to
record young and delicate sequences of soft, organic-rich sediment that can be easily dated. For the purposes
of uncovering slickenlines, however, site selection should follow different criteria. We suggest that mature
fault surfaces within bedrock are better targets, as they are more likely to contain the abrasive conditions
necessary for slickenline generation and preservation. In addition, structurally simple parts of active faults
should be prioritized, as distinct changes in slip direction have been found near complexities in surface rup-
tures (e.g., Kearse et al., 2019; Pan et al., 2014).

To expose up to several square meters of fault plane surface, we propose a different style of excavation than is
typical of trenches with a paleoseismicity focus. Initially, a small pilot trench would be incised across the tar-
get fault scarp to constrain the location and orientation of the fault plane in cross section (Figures 12a and
12b). Next, a fault-parallel trench located on one side of the fault would be incised to remove the bulk of
material adjacent to the fault surface (Figure 12c). It is critical that the trenching process does not destroy
or modify in any way the condition of the buried fault surface. Thus, we suggest that excavation by machin-
ery is stopped short of exposing the fault plane (e.g., Figure 12c). As the final stage, the fault plane should be
carefully uncovered by hand, so as not to introduce any artificial slickenlines (Figure 12d). In a successful
attempt at unearthing coseismic slickenlines on a buried fault plane, Otsubo, Miyashita, et al. (2013) exca-
vated a trench subparallel to the 2011 rupture trace of the Yunodake fault.
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Figure 12. Cartoon of proposed trench excavation process. (a) Uncertainty in fault plane location. Dashed box outlines
location of proposed pilot trench. (b) Fault plane identification following pilot trench excavation. Dashed box

outlines adjacent site for fault-parallel trench. (c) Removal of material from next to the fault plane. We propose that this
be done using machinery, with care taken to avoid disturbing the fault surface. (d) Last stage is carefully removing
material by hand to expose the fault plane surface.

Due to the destructive ploughing process during slickenline formation in soft fault gouge, it is unlikely that
any discrete slip surface will preserve slickenlines older than its most recent slip episode. In post-earthquake
field investigations, slickenlines are commonly inscribed onto extremely fragile fault gouge, exhibit sharp
micro-topographic relief across their tracks (e.g., Figure 13a), and therefore can be confidently attributed
to the most recent earthquake (Spudich et al., 1998; Kearse et al., 2018, 2019). Using these criteria, overlap-
ping slickenlines, each with different slip directions, documented in these post-earthquake scenarios have
been interpreted as forming in the same slip episode involving coseismic changes in slip direction (Kearse
et al., 2018, 2019; Otsubo, Shigematsu, et al., 2013; Pan et al., 2014) (e.g., Figure 13b). Relict slip planes adja-
cent to principle slip surfaces have been found to host slickenlines that appear much older than the most
recent earthquake (e.g., Figure 13c), suggesting that there is potential for preserving slickenlines from more
than one earthquake event, within a fault zone at a single location. However, assigning an absolute age to
any particular slickenline (except those assigned to the most recent earthquake) may not yet be possible with
current dating techniques. Therefore, when exhuming a paleoslip surface on an active fault, it is likely that
the rupture direction of only the most recent earthquake can be determined using this new method.

4.2. Slickensides and Linear Slickenlines

The widespread occurrence of dynamic changes in slip direction raises questions about the processes respon-
sible for the generation of linear slickenlines formed in surface rupturing earthquakes. Typically, slicken-
lines only record a fraction of coseismic slip (Avagyan et al., 2003; Kearse et al., 2018; Lin et al., 2002) and
therefore may only represent a short, linear part of a longer curved slip path (Shimamoto, 1996).
Alternatively, they may be part of an entirely linear slip path that formed along a mode II or mode III
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Figure 13. Slickenlines of various ages. (a, b) Slickenlines observed on the Kekerengu fault after the Kaikoura
earthquake. Note the fresh and delicate nature of the gouge-covered surface shown in (a). Photo taken 13 days after
the earthquake by Kate Clark (GNS Science); geological hammer for scale. (b) Overlapping slickenlines in extremely
delicate gouge, both formed during 2016 Kaikoura earthquake. Photo taken 72 days after the earthquake by Jesse Kearse;
pen for scale. (c) Slickenlines observed on the Beichuan fault after the 2008 Wenchuan earthquake (photo taken from
Pan et al., 2014). In the center of the photograph, a patch of the 2008 slip surface has been eroded to expose a relict slip
surface; scale unknown.

rupture, such as those found above the hypocenter of the 1999 M, 7.1 strike-slip Hector Mine earthquake
(Treiman et al., 2002).

It is important to recognize that slip directions defined by linear slickenlines inscribed on a fault plane sur-
face may not necessarily represent the overall kinematics of that fault. For example, linear slickenlines were
observed on a fresh free face of the Yunodake fault following the 2011 M,, 6.6 Fukushima earthquake
(Figure S1). If taken at face value, the slip direction defined by these slickenlines suggests dextral-normal slip
ata pitch of 60° north (Figure S1). Yet the true 3D slip vector for this site during the 2011 earthquake is orien-
tated at a pitch of ~75° south, a difference of 45° in the plane of the fault.

Geologists have long observed and measured slickenlines on exposed long-term fault planes (Doblas, 1998;
Petit, 1987; Twiss et al., 1991). These so-called slickensides are hard, reflective fault surfaces that generally
contain well-developed slip-parallel corrugations whose spatial dimensions are self-similar (Candela
et al., 2012; Renard et al., 2013). Observations of natural faults and results of laboratory shearing experi-
ments suggest that slickenlines of this type are formed through both brittle and ductile processes
(Kuo et al., 2016; Power & Tullis, 1989; Toy et al., 2017) and smooth the fault surface in the direction of slip
(Brodsky et al., 2011). The depth at which these surfaces form is not well constrained, but there is evidence to
suggest that they can form in the upper 5 km (e.g., Kirkpatrick et al., 2013; Power & Tullis, 1989). The strong
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linearity of grooves preserved on the surfaces of many slickenside outcrops, such as the Corona Heights fault
in California (Kirkpatrick et al., 2013; Kirkpatrick & Brodsky, 2014) and the Dixie Valley fault in Nevada
(Candela & Renard, 2012; Power & Tullis, 1989), appears to be at odds with the findings of this study.
These discrepancies, however, may reflect differences in coseismic slip direction on the fault at the ground
surface (focus of this paper) and on the fault at depth. For example, our dynamic models predict increasing
suppression of coseismic slip curvature with depth, with less than 2° of curvature at 4-km depth. There is
also likely to be greater resistance to changes in slip direction than is captured in our model (based on a pla-
nar fault and isotropic friction); pronounced slip-parallel corrugations on the fault interface are thought to
create significant stress anisotropy (e.g., Power et al., 1987; Toy et al., 2017), making it more difficult for
dynamic stresses to drive coseismic changes in slip direction.

Slickensides of this type are brought to the surface either through fault slip or exhumation (or both) and
retain their hard, reflective character making them resistant to erosion. Slickenlines generated at the ground
surface are generally imbedded within soft fault gouge or clay and do not withstand subaerial weathering.
They can also form as shallow scratches on hard slickenside surfaces, such as those formed during the
2016 Central Italy earthquake sequence (Pucci et al., 2017; Villani et al., 2018), and are not necessarily
colinear with the inherited slickenside fabric (e.g., Galderesi & Galli, 2020).

4.3. Limitations and Future Work

Heterogeneity in fault structure or stress, including those arising from lateral variation in fault maturity, is
known to influence the dynamics of earthquake rupture (Dunham et al., 2011; Harris & Day, 1999; Perrin
et al., 2016; Ripperger et al., 2007) and could complicate the predicted patterns of slip-path convexity.
Such fault behavior was seen following the 2016 Kaikoura earthquake, where distinct changes in slip direc-
tion were observed at sharp fault bends and step overs (Kearse et al., 2019; Pan et al., 2014). The reasons for
this distinct slip behavior are not yet clear, and investigation of rupture direction using curved slickenlines
should focus on structurally simple parts of active faults—that is, parts which are straight and aligned par-
allel to the average strike of the fault and which contain only one strand.

Although supershear rupture propagation is present in our models (e.g., Hu et al., 2019; Kaneko &
Lapusta, 2010), it does not become a dominant instability and thus has little effect on slip behavior or tem-
poral changes in slip direction. Cases in which free-surface-induced supershear rupture propagation
becomes dominant may influence temporal changes in slip direction and may even lead to observable phase
transitions preserved in slickenlines tracks. This remains a subject of future work.

4.4. Implications for Seismology

Our theoretical framework for interpreting curved slickenlines (Figure 1) will enable earthquake geologists
to determine the rupture propagation directions of earthquakes lacking instrumental data. One famous
example of a large earthquake with a poorly constrained rupture direction is the 1857 My, 7.9 Fort Tejon
earthquake in southern California (Harris & Simpson, 1996; Sieh, 1978a). It has been suggested that this
360 km long rupture propagated southeastward (Sieh, 1978b); however, there are no instrumental data asso-
ciated with this earthquake, and an opposite (or bilateral) direction of rupture propagation cannot be ruled
out. Our results suggest that trenching the 1857 section of the San Andreas fault in pursuit of curved
slickenlines could constrain the rupture direction of this earthquake, which underpins realistic earthquake
simulation exercises and the assessment of ground motion hazard in earthquake-prone regions (Bielak
et al., 2010; Bouchon & Aki, 1980).

Another potential application of this research is to constrain the rupture pathway of complex earthquakes.
For instance, important details of the propagating rupture pathway of the 2016 M, 7.8 Kaikoura earthquake
remain unresolved due to sparse instrumental coverage (Ando & Kaneko, 2018; Hamling et al., 2017; Klinger
et al., 2018; Litchfield et al., 2018; Ulrich et al., 2019). Independent, on-fault evidence of rupture direction—
such as curved slickenlines—would place strong constraints on which rupture scenarios are most valid, pro-
viding critical insight into how dynamic rupture can navigate crustal fault networks to produce complex
earthquakes.

Some theoretical studies (Andrews & Ben-Zion, 1997) have shown that rupture propagation direction should
be influenced by elastic contrasts across bi-material faults, while other research (Harris & Day, 2005) has
presented both empirical and numerical evidence suggesting that there is no preferred rupture direction.
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Debate surrounding this topic suffers from insufficient observations that constrain the rupture direction of
past large earthquakes on mature, plate boundary faults. Our method unifies fault mechanics theory and
earthquake physics with historical and recent geological observations of earthquake rupture propagation
directions to provide a robust method that earthquake geologists can employ to increase global observations
of rupture propagation direction in past large earthquakes.
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Parameters Value in the Values considered
representative model

Effective normal stress o 7.4 (MPa/km down-dip | 5.0-10.0 (MPa/km down-
distance) dip distance)

Prestress (initial shear) along cos(rake °) *0.55%c cos(rake °) *0.55*%c

strike Tos

Prestress (initial shear) along sin(rake °) *0.55*0 sin(rake °) *0.55*0

dip Tod

Static friction ps 0.80 0.6-0.85

Dynamic friction pg 0.40 0.1-0.5

Characteristic slip distance D¢ 0.30m 0.2-3.0m

Frictional cohesioninthetop 5 | 2.0 MPa 0.0-2.0 MPa

km C

Seismic ratio, S 1.5 0.5-25

Dynamic stress drop at 7.5 km 7.2 MPa 3.0—-25.0 MPa

down-dip distance

Table S1. Stress and friction parameters for the representative cases shown in Figure 2, and
ranges of different values considered.
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Figure S1. Surface rupture of the Yunodake fault (photographs and structural measurements
provided by Kazuo Mizoguchi) (a) photograph showing the surface rupture trace at this site
looking towards north (b) close-up of linear slickenlines observed on the fault plane and
subsurface soils. Slickenlines pitch 60° north indicating a dextral component of motion (c)
wider view of the slickenline observations in part b. (d) schematic block diagram showing the
relationship between observed linear slickenlines (black), net offset defined by piercing
points (blue), and the curved slip path (yellow).



