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Machine learning predicts meter-scale
laboratory earthquakes

Reiju Norisugi 1 , Yoshihiro Kaneko 1 & Bertrand Rouet-Leduc 2

In recent years, there has been a growing interest in utilizingmachine learning
(ML) to investigate the predictability of shear-slip failures, known as laboratory
quakes, in centimeter-scale rock-friction experiments. However, the applic-
ability of ML to larger-scale laboratory quakes and natural earthquakes, where
important timescales vary by orders of magnitude, remains uncertain. Here,
we apply an advanced ML approach to meter-scale laboratory quake data,
characterized by accelerating foreshock activity manifesting as increasing
numbers of tiny acoustic emission events. We demonstrate that a trained ML
model, using a network representation of the event catalog, can accurately
predict the time-to-failure of meter-scale mainshocks, from tens of seconds to
milliseconds before the upcoming main quakes. These timescales correspond
to approximately decades down to weeks in the context of large earthquakes.
By comparingour resultswith adynamicmodel of shear failures that replicates
the experimental data, we suggest that tracking the evolution of shear stress
on creeping fault areas, rather than nominal shear stress, indirectly through
the acoustic emission events, enables ML to predict both numerical and
laboratory quakes. These findings provide critical insights into fault conditions
that may facilitate short-term forecasting of earthquakes in nature.

Forecasting earthquakes with reliable accuracy remains a formidable
and unresolved challenge in seismology1, in part due to the inacces-
sibility of seismogenic zoneswithin the Earth’s crust and the scarcity of
in situ data. There was once considerable optimism within earthquake
science regarding the potential for short-term forecasting, based on
the understanding that dynamic fault failures (earthquakes) cannot
occurwithout a precursory, near-failurephasewhere the shear stress is
just below the fault strength2,3. During this phase, micro-fracturing4 or
quasi-static preslip5 typically accelerates due to the delayed failure
characteristics inherent to rock fracture and friction. However, the
evolution of physical conditions associated with the precursory phase
in natural, heterogeneous fault zones remains inaccessible and poorly
understood. Additionally, recent developments have led to growing
skepticism regarding the viability of utilizing short-term precursors.
Observational studies6,7 have shown that small and large earthquakes
are indistinguishable until rupture begins to cease, suggesting that the
processes occurring during the precursory phase exert minimal

influence on the eventual size of the dynamic rupture, thereby limiting
their utility as reliable precursors to large earthquakes. Furthermore,
possible precursory signals, such as slow slip events, were identified
only retrospectively, after a large earthquake had occurred8,9, and only
a small fraction of slow slip events have been linked to the occurrence
of large quakes10.

Nevertheless, recent studies utilizing machine learning (ML)
techniques—statistical algorithms designed to uncover hidden pat-
terns in complex, multi-dimensional data—have reignited optimism in
the potential for earthquake forecasting. When applied to laboratory
experiments that simulate natural faulting through the shearing of
rock samples or gel materials, ML techniques have successfully pre-
dicted the timing of laboratory quakes by analyzing precursory
acoustic emissions (AE)11–23. The evolution of nominal shear stress
within laboratory fault systems, as indicated by increasing variance in
AE signal amplitude, has been associatedwith the preparatory phaseof
quakes11,12,24. Additionally, ML models trained on ultrasonic (high-

Received: 26 September 2024

Accepted: 17 September 2025

Check for updates

1Department of Geophysics, Kyoto University, Kyoto, Japan. 2Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan.
e-mail: norisugi.reiju.77e@st.kyoto-u.ac.jp

Nature Communications |         (2025) 16:9593 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0009-0002-6610-9482
http://orcid.org/0009-0002-6610-9482
http://orcid.org/0009-0002-6610-9482
http://orcid.org/0009-0002-6610-9482
http://orcid.org/0009-0002-6610-9482
http://orcid.org/0000-0003-2342-0131
http://orcid.org/0000-0003-2342-0131
http://orcid.org/0000-0003-2342-0131
http://orcid.org/0000-0003-2342-0131
http://orcid.org/0000-0003-2342-0131
http://orcid.org/0000-0002-2791-7949
http://orcid.org/0000-0002-2791-7949
http://orcid.org/0000-0002-2791-7949
http://orcid.org/0000-0002-2791-7949
http://orcid.org/0000-0002-2791-7949
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64542-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64542-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64542-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64542-4&domain=pdf
mailto:norisugi.reiju.77e@st.kyoto-u.ac.jp
www.nature.com/naturecommunications


UNCORRECTED P
ROOF

frequency) pulse data have shown promise in predicting both the time
to failure and the evolution of shear stress19. These findings suggest
that precursory signals, such as increasing AE variance and the
destruction of weak microscopic asperities, may serve as proxies for
the onset of foreshock activity25–29.

Despite these advancements, several critical challenges remain
unresolved. First, most studies on the predictability of laboratory
quakes have predominantly utilized centimeter-scale rock samples or
sub-meter-scale gel models11–23. Given the scale dependency observed
in frictional behavior duringmeter-scale rock-friction experiments30, it
is essential to investigate predictability in larger-scale rock failures to
effectively extrapolate these findings to natural faulting scenarios.
Second, the predictive performance immediately preceding labora-
tory quakes—during the final few percent of recurrence intervals—has
been seldom addressed. In the context of large earthquakes, this
period corresponds to timescales of several years, making it impera-
tive to develop methodologies that enable reliable predictions on
much shorter timescales. Third, the underlying mechanisms behind
the predictive capabilities ofML remain elusive. This gap is particularly
pronounced when it comes to understanding the physical processes
and the evolution of fault conditions, as direct observation of the
physical state within fault zones (e.g., local shear stress or slip velocity)
is challenging, even in controlled laboratory settings.

In this study, to address these questions, we leverage data from
a meter-scale rock-friction laboratory experiment31 and apply a
machine learning (ML) approach to predict both the timing of
laboratory quakes and the evolution of on-fault shear stresses. The
experimental fault exhibits a heterogeneous distribution of gouges
and damage zones, leading to complex foreshock activity char-
acterized by an inverse Omori’s law and a temporal decrease in the
Gutenberg-Richter b-value preceding laboratory quakes31. These
phenomena have been reported occasionally in various laboratory
experiments32–43 and in natural settings44–52. Our focus is on eluci-
dating the evolution of physical variables and associated slip phe-
nomena that may enable short-term forecasting of imminent meter-
scale laboratory quakes.

Results
Machine learning predicts time to meter-scale laboratory
quakes and nominal shear stress evolution
We apply machine learning (ML), specifically the Random Forest (RF)
algorithm, to catalog data derived from a large-scale, rock-friction
laboratory experiment31 (Fig. 1a). This experiment (LB12-011), con-
ducted using a ground shaking table, featured a fault with a hetero-
geneous distribution of fault gouge (Fig. 1b) resulting from a prior
high-speed sliding test. It also exhibited active acoustic emission (AE)
events preceding 1.5-m × 0.1-m laboratory quakes30,31. The rock sam-
ple, metagabbro from Tamil Nadu, India, consisted of a lower block
fixed to a shaking table and an upper block supported by an isolated
reaction force bar (Fig. 1a). Shear loading (0.01 mm/s) was applied
parallel to the fault, with a constant normal load of 6.7 MPa from
three jacks.

In this study, we refer to the failure events as laboratory quakes
and categorize all other AE events as foreshocks. The events are
characterized using a network representation53 to generate input
variables for the ML model, which we associate with the time
remaining before the next laboratory quakes. The experimental data,
spanning approximately 900 seconds, were divided into a training set
(covering approximately 200 to 600 seconds, during which 19
laboratory quakes occurred, excluding the initial 200 seconds to allow
the experiment to reach a steady state), a validation set (from
~600 seconds to 700 seconds, with 4 laboratory quakes), and a test set
(from ~700 to 900 seconds, with 11 laboratory quakes). Detailed
descriptions of the experimental data and the forecasting technique
are provided in the Methods section.

We find that the trained ML model successfully predicts the tim-
ing of laboratory quakes, with predictions ranging from tens of sec-
onds (Fig. 1c) to milliseconds (Fig. 1d) before the quakes. The
prediction score is evaluated by the coefficient of determination based
on logarithmic values (Eq. (4)), which is logR2

lab�quake =0:84 for the test
set. Remarkably, the model can accurately forecast the occurrence of
the next quake down to the millisecond before it happens (Fig. 1d),
based solely on current and past catalog information of tiny fore-
shocks, despite their sparse distribution in time and space and the
potential incompleteness of the event catalog. Themodel’s short-term
forecasting accuracy is notably enhanced when the number of fore-
shocks per quake is relatively large (e.g., the 6th and 7th events in
Fig. 1d), allowing predictions down to milliseconds before the quakes,
with an accuracy comparable towithin 0.1% of the recurrence intervals
of the laboratory quakes. However, the ML model encounters chal-
lenges in accurately predicting upcoming quakes when the number of
foreshocks per quake is relatively small (e.g., the 5th, 8th, 9th, and 10th
events in Fig. 1d). This inaccuracy, particularly in the moments leading
up to the quakes, is likely due to insufficient event detection and
sensor resolution.

The effective features for predicting the time to quakes can also
predict the evolution of the nominal shear stress. Fig. 2a, b illustrate
the prediction of nominal shear stress by the trained ML model,
yielding linR2

lab�stress=0.81 for the test set. The nominal shear stress
data are sampled during foreshocks and quakes, and it is detrended
by using a least squares method on the training set (see details
in “Method”). The ML model learns to associate this stress with
the same input features used for predicting the time to laboratory
quakes.

We also train a simple deep learning (DL) model to predict the
time to laboratory quakes and nominal shear stress. The DL models
achieve accuracy comparable to ML models, demonstrating the
robustness of our results regardless of the predictive model used (see
“Methods” and Figs. S5 and S6 for details). Additionally, we construct
and apply a simple inter-event time model11,19, which relies solely on
recurrence intervals of laboratory quakes (see Methods). With low
prediction scores (Fig. S2), this model serves as a baseline, emphasiz-
ing the advantage of ML and DL approaches.

These results suggest that a sufficiently trained ML or DL model
can infer the current state of the fault using only event catalog data
over both long- and short-term scales, and more generally that the
foreshock statistics encode the state of the fault.

Examining the evolution of the features used to predict the time
to laboratory quakes and the nominal shear stress reveals a systematic
pattern (Fig. 2c). Specifically, the average event interval and seismic
moment over specific timescales (e.g., Δt20f and M20f , respectively)
either logarithmically decrease or increase as the laboratory quakes
approach. The distinct logarithmic differences in these features at
various times before a laboratory quake suggest that they play an
important role in the accuracy of the predictions.

Evolution of event interval and seismic moment that enables
accurate prediction
To understand the relationships between input features of the ML
model and the prediction outcomes, we analyze the distribution
of input data as a probability density via kernel density estimation.
Figure 3a, b show the distribution of event intervals (Δt20f ) and seismic
moments (M20f ) averaged over specific timescales as functions of time
to quake. These features show a clear trend: the event intervals
decrease, and seismic moments increase as the quake approaches, as
indicated by the green arrows in Fig. 3a, b, starting approximately one
second before the quakes occur. The decreasing event interval reflects
the characteristics of an inverse Omori’s law, while the increasing
seismic moment suggests a temporal decrease in the Gutenberg-
Richter b-value (although the number of events is not sufficient for
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stable b-value computation). The event interval also exhibits a distinct
decreasing trend during the loading phase, where the nominal shear
stress linearly increases with time (Fig. 2a). These features, which serve
as inputs to the ML model, allow our approach to effectively capture
and quantify these precursory seismicity characteristics, and explain
the reason why our ML model can accurately predict the timing of
meter-scale laboratory quakes using only catalog information.

In contrast, the nominal shear stress does not correlate with the
input features used in our ML model. The relations between the
nominal shear stress and the input features (Δt20f andM20f ) exhibit a
monotonousflat distribution relative to shear stress just before quakes
(highlighted by the green circles in Fig. 3c, d). A correlation between
the features and the labels is observed only in the event interval during
the loading phase (indicatedby the gray arrow in Fig. 3c), extending up
to approximately one second before the quakes. By comparing Fig. 2b

and 2c, we see that the effective features (such as Δt20f and M20f )
continue to evolve even during the shear stress stagnation, which
contrastswith the trendobservedwhenusing the time to quakes as the
axis (Fig. 3a, b). When nominal shear stress plateaus roughly one sec-
ond before quakes (indicated by the nearly horizontal red curve in
Fig. 2b), foreshock activity significantly increases, suggesting that the
plateau is associated with fault stress unloading via foreshocks.
Therefore, although theMLmodel accuratelypredicts both the time to
quakes and the evolution of nominal shear stress, implying apparent
causality (Figs. 1, 2), nominal shear stress itself may not be a direct
controlling factor for the predictability of the laboratory quakes dur-
ing the precursory phase, contrary to inferences from previous
studies24. Themodel’s predictive success likely arises from its ability to
capture the subtle evolution of other features rather than relying solely
on nominal shear stress.

Ground

Reaction force bar

Upper rock

Shaking table

Shear load cell Normal load cell

Lower rock

1.5 m

2 m

Loading

(a)

Fault gouge
1.5 m

0.1 m

Training logR2=0.98, Testing logR2=0.84 (σ=5x10-3)

Normalized logarithmic misfit0 1

Conceptual fault surface
(b)

(c)

(d)

Fig. 1 | Experimental setup and Random Forest (RF) prediction of time to
laboratory quakes in the test set. a, b Conceptual illustration of the meter-scale
rock-friction laboratory experiment31. a Schematic of the experimental setup
showing two rectangular rock blocks (1.5 m and 2 m in length) being sheared by a
large shaking table and a reaction force bar (indicated by the red arrow) under
constant loading conditions: normal stress of 6.7 MPa, a loading rate of 0.01 mm/s,
and a total slip of approximately 7 mm. b Simulated fault surface with a hetero-
geneous distribution of gouge. Prediction of the time to laboratory quakes by the
trained RFmodel on the scale of tens of seconds (c) and on the event number scale
(d). The red lines and dots represent the actual target values, while the blue dots

and curves show the RFmodel predictions. In d, the blue-shaded area indicates the
5 to 95% percentile range of predictions of the trees in the RFmodel, and the green
color bar represents the normalized logarithmic misfit. Predictions are irregularly
spaced in time, corresponding to the occurrence of events. The event number axis
corresponds to the discrete time series, with a focus on the period immediately
preceding quakes. The performance is quantified by the coefficient of determina-
tion for logarithmic values (as defined in Eq. (4)). The standard deviation σ is
obtained by 100 RF models with different random seeds under the optimized
hyperparameters to show the stability of R2.
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Insights from synthetic seismicity generated by an earthquake-
cycle model
To examine why an MLmodel can accurately predict the timing of the
laboratory earthquakes, we set up and simulate seismicity that repli-
cates the laboratory experimental data using a fully dynamic model of
earthquake cycles54. For simplicity, the model contains a one-
dimensional planar strike-slip fault embedded in an elastic con-
tinuum (Fig. 4a). The physical parameters are set according to elastic
constants and sample size in the laboratory experiment30. Simplified
frictional heterogeneitymimicking the responseof the fault gouge and
bare surface is assumed, with alternating velocity-strengthening (VS)

and velocity-weakening (VW) patches to generate accelerating fore-
shock activity (Fig. 4b). Details of the model setup are provided in the
Methods section.

The model generates synthetic quakes with a recurrence interval
of approximately 12 seconds and a moment magnitude of Mw ~−2.5,
alongwith foreshocks in the range of −6 <Mw < −3, consistent with the
laboratory quakes (see Methods and Fig. S7 for details). To avoid
contamination by numerical artifacts, we remove data for earthquakes
smaller than the magnitude completeness threshold (Mw = −4.6) from
the catalog (Fig. S7b). To further replicate the conditions of the
laboratory experiments (see Fig. 1d), we exclude foreshock data that

Training linR²=0.96, Testing linR²=0.81 (σ=8x10-3)
(a)

Normalized linear misfit0 1
(b)

(c)

Fig. 2 | Prediction of nominal shear stress in the test set by the trainedRandom
Forest (RF) model. Prediction of the nominal shear stress over a timescale of tens
of seconds (a) and on the event number scale (b). The red lines and dots represent
the actual target values, while the blue dots and curves indicate the predictions
made by the trained RF model. The blue-shaded area represents the 5 to 95%
percentile range of the predictions, and the green color bar reflects the normalized
linear misfit. The prediction accuracy is quantified using the coefficient of
determination linR2 (as defined in Eq. (5)). The standard deviation of R2 score σ is

computed from 100 RFmodels with different random seeds. c Temporal evolution
of the event interval (Δt20f , shown in pink) and seismic moment (M20f , shown in
blue) averaged over specific timescales (see Methods). These features are direct
inputs for the trainedRFmodel used to generate thepredictions shown inFigs. 1c, d
and 2a, b. The timings of laboratory quakes are indicated by black arrows. The flat
portions of M20f following each laboratory quake arise from the significant con-
tribution of individual quake data points at this specific network size.
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occur within 10−3 seconds of the main failures, aligning with the
laboratory’s detectability of tiny events.We calculate foreshock counts
and corresponding b-values for the stacked catalog (seeMethods) and
confirm that the foreshocks exhibit a temporal decrease in b-values54

and follow an inverse Omori’s law55, beginning several milliseconds
before synthetic quakes (Fig. S7c). For ML prediction, the dataset is
divided as follows: the training set spans 70–770 seconds of simulation
time (including 52 quakes, with the first four cycles removed), the
validation set covers 770–870 seconds (7 quakes), and the test set
spans 870–1070 seconds (15 quakes).

As in the laboratory quake case, the trained ML model can
accurately predict the timing of synthetic quakes, achieving
logR2

syn�quake =0:83 and nominal shear stress with linR2
syn�avg = 0:76, over

timescales ranging from ten seconds to milliseconds (Fig. 4c, d). Since
the numericalmodel provides direct access to local fault conditions, the
prediction of the shear stress averaged over the VS patches (referred to
as VS shear stress) is reported, yielding linR2

syn�V S =0:70 (Fig. 4e).
Notable mispredictions occur primarily during large peaks in both
average shear stress (negativepeaks) andVSshear stress (positivepeaks)
(Fig. 4d, e). These peaks are attributed to the effects of aftershocks, as
the model predicts an increase in VS shear stress following the rupture

propagation of synthetic quakes. Due to the rarity of aftershock
sequences in this model, the ML model does not sufficiently learn from
the limited aftershockdata available, leading towider 5 to95%percentile
ranges during these periods. However, aside from the misfits immedi-
ately following synthetic quakes, the predictions are accurate, with the
MLmodel closely tracking the stress evolution, particularly the VS shear
stress, which shows a narrow percentile range, indicating that most RF
trees generate similar prediction values (Fig. 4d, e).

The machine learning model tracks the evolution of shear
stresses on creeping fault patches, enabling accurate prediction
Upon analyzing the evolution of key input features critical for accurate
predictions, we observe similarities between the synthetic and
laboratory data, despite the simplification of the simulation. In the
synthetic catalog, the average event interval (Δt20f ) decreases loga-
rithmically as a quake approaches (indicated by the green arrow in
Fig. 5a), while the seismic moment (M20f ) concurrently increases
(green arrow in Fig. 5b). These trends, which reflect an inverseOmori’s
law and a decrease in the Gutenberg-Richter b-value, allow the ML
model to predict the timing of synthetic quakes across a wide range of
timescales, from ten seconds to milliseconds before the events.
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Fig. 3 | Important feature distributions for the accurate prediction of labora-
tory quakes and nominal on-fault shear stresses. a, b Distributions of important
features as a function of time to quake: pink and blue indicates the distributions of
Δt20f (event interval averaged over certain timescales), andM20f (seismic moment
averaged over certain timescales), respectively. c, d Distributions of important
features as a function of nominal shear stress. The contour lines show the

probability density of the data approximated by kernel density estimation, with
dark/light colors indicating high/low data density in the feature-target space. The
arrows emphasize the temporal evolution of these features. The right-side sepa-
rated cluster in (b) and (d) are data containing laboratory quakes. Other important
features (Fig. S15a) depict a similar trend.
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Training logR²=0.96, Testing logR²=0.81 (σ=4x10-3)

(c)

2m-scale rock pair
Shaking table

Constant normal stress

force
Loading 1D planar fault

Uniform stressing rate

Normalized misfit0 1

(a) (b)

Training linR²=0.98, Testing linR²=0.76 (σ=8x10-3)
(d)

Training linR²=0.98, Testing linR²=0.70 (σ=1x10-2)(e)

Fig. 4 | Setup of numerical model and the Random Forest (RF) prediction of
synthetic quakes and shear stresses in the test set. a Conceptual illustration of
the fully-dynamic earthquake-cycle model. b The fault surface parameterized by a
heterogeneous distribution of velocity-strengthening (VS) and velocity-weakening
(VW) friction. Predictions of time to synthetic quakes (c), average shear stress
(analogous to nominal shear stress in the laboratory experiment) (d), and shear
stress averaged over the VS patches (e). The red curves represent true values, while

the blue curves show predictions by the trained RF model. The blue-shaded areas
indicate the 5 to 95% percentile range of the predictions. The green color bars
depict the normalized logarithmic misfit in (c) and the normalized linear misfit in
(d, e). The definitions of R2 follow logR2 (Eq. (4)) in (c) and linR2 (Eq. (5)) in (d, e). The
standard deviation of prediction score σ is computed from 100 RF models ran-
domly trained with different seeds.
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Furthermore, the average shear stress correlateswithΔt20f onlyduring
the loading phase where the shear stress continues to rise, up to one
second before the synthetic quakes (as depicted by the gray arrow in
Fig. 5c). This leads to a flattened, uncorrelated pattern just before the

synthetic quakes, as the average shear stress nearly stagnates (high-
lighted by the green circles in Fig. 5c). Similarly, M20f forms an
uncorrelated cluster when plotted against average shear stress (green
circle in Fig. 5d).
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Fig. 5 | Important feature distributions for the accurate predictionof synthetic
quakes, nominal on-fault shear stress, and velocity-strengthening (VS) shear
stress. Pink and blue colors represent the event interval (Δt20f ) and seismic
moment (M20f ), respectively, averaged over certain timescales as functions of the
time to synthetic quakes (a, b), average shear stress (c, d), and VS shear stress (e, f).
The contour lines depict the probability density of the data, estimated via kernel

density estimation, with dark colors indicating high data density and light colors
indicating low data density within the feature-target space. Arrows emphasize the
temporal evolution of these features. The right-side separated clusters in (b), (d),
and (f) represent data involving synthetic quakes. Other important features
(Fig. S15b) depict a similar trend.
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Surprisingly, the relationships between input features and VS
shear stress exhibit clear correlations both during the loading phase
(gray arrow in Fig. 5e) and immediately before synthetic quakes (green
arrow in Fig. 5e), with a logarithmic decrease as the VS shear stress
increases linearly. Likewise, M20f shows a logarithmic increase (green
line in Fig. 5f). These results suggest that precursory seismicity is pri-
marily driven by an increase in VS shear stress, rather than the nominal
shear stress on the fault, thereby enabling the MLmodel to accurately
predict synthetic quakes (Fig. 4c) –an insight that is difficult to obtain
from laboratory data alone.

To directly investigate how VS shear stress increases leading up
to a synthetic quake, we analyze the relationship between slip
velocity and VS shear stress throughout a single quake cycle in the
numerical model (Fig. 6). During the loading phase, the VS shear
stress gradually rises over time, accompanied by sporadic fore-
shocks. In contrast, during the precursory phase, slip velocity on the
VS patches escalates rapidly due to afterslip triggered by numerous
foreshocks (orange and blue jagged curves in Figure 6). When a
foreshock rupture arrests on VS patches, both local slip velocity and
shear stress increase, enhancing the likelihood of rupture nucleation
in neighboring VW patches and increasing the probability that rup-
tures will propagate through the VS patches (Fig. S8). This process
leads to more frequent larger foreshocks and a reduction in b-
values54. This positive feedback mechanism occurs when the nom-
inal shear stress is elevated and begins to plateau, resulting in the
distinct evolution of average shear stress versus VS shear stress
(Fig. 6). Ultimately, one of the ruptures originating from a VWpatch,
similar to the foreshocks, propagates through multiple VS barriers,
culminating in a main quake. As a result, precursory seismicity is
systematically driven by local stress increases on creeping barriers,
which are captured indirectly through the seismicity catalog via the
network representation.

Discussion
Based on the consistency between our laboratory and numerical
results, we propose a plausible explanation as towhymachine learning
(ML) can predict laboratory earthquakes. At the onset of quake cycles,
foreshocks occur sporadically (white circles in Fig. 7a) at points of
stress concentration, most commonly at the boundaries between
gouge layers and bare fault surfaces. The ruptures of these foreshocks
are likely arrested by creeping barriers, such as gouge layers (depicted
as gray areas in Fig. 7a). As the fault becomes critically stressed,
meaning the nominal shear stress on the fault reaches a critical level
(approximately one second before a quake in this experiment), a

positive feedback between the nucleation of foreshocks and sub-
sequent prolonged creep on VS patches accelerates toward a labora-
tory quake (Figs 3 and 5). This precursory phase is marked by a
stagnation of the nominal shear stress, an expanding zone of fore-
shocks, an inverse Omori’s law and a b-value reduction31, while the
shear stress on the creeping patches increases rapidly (Figs. 6 and 7d,
e). The likelihood of one of the nucleating ruptures growing into a
quake larger than the foreshock zone increases, eventually leading to a
main quake (green star in Fig. 7b). After themain quake, a qualitatively
similar process repeats, although the characteristics of seismicity—
such as the number of foreshocks and their nucleation sites—vary
depending on the heterogeneous distributions of residual shear stress
and strength (Fig. 7c), even after a complete failure in the earth-
quake cycle.

Our results demonstrate that a trained ML model, utilizing a
network representation of the event catalog, can accurately predict
the time-to-failure of meter-scale mainshocks, ranging from tens of
seconds to milliseconds before the upcoming main quakes. These
timescales, corresponding to approximately decades down to weeks
transposed in the context of large earthquakes, could potentially offer
short-term warnings if applied to natural large quakes. However, both
the laboratory and numerical faults in our study were highly idealized
compared to natural faults.

To assess the impact of different degrees of frictional hetero-
geneity onML prediction accuracy, we analyze numerical models with
varying heterogeneity levels (i.e., different a − b of velocity-weakening
patches; Figs. S9–S11). While prediction accuracy varies with the
degree of heterogeneity (Figs S9 and S10), as long as foreshocks arise
from the sameunderlyingphysicalmechanism, the reason for accurate
mainshock prediction remains consistent with the default case shown
in Fig. 4. However, when barriers to rupture becomemore effective, as
parameterized by weaker velocity-weakening patches, earthquake
swarm-like behavior emerges without distinctmainshocks (Fig. S11). In
this scenario, prediction scores drop significantly becausewell-defined
mainshocks are absent (Fig. S11).

An additional complexity expected for natural faults is the
occurrence of confined ruptures that do not reach the fault edges. In
the laboratory experiment with the elongated rock sample we con-
sidered, all mainshocks ruptured the entire fault surface31. To evaluate
the applicability of ML prediction to confined ruptures, we develop a
numerical model that simulates both partial and full ruptures (see
“Methods” and Fig. S12). Despite the presence of partial ruptures, the
ML model accurately predicts the timing of both rupture types
(Fig. S12), suggesting thatMLpredictions remain effective for confined

Fig. 6 | The evolution of fault slip velocity, average shear stress, and velocity-
strengthening (VS) shear stress over a representative synthetic-quake cycle.
The time interval corresponds to the period from 5 seconds after the 39th up to the
40th synthetic quake within the training set. The blue curve shows the fault slip

velocity averaged over the VS patches VV S. The orange and black curves are shear
stress averaged over the VS patches (τV S) and the entire fault (τfault), respectively.
The mean values (MEANðτV SÞ and MEANðτfaulrÞ) are removed from each
stress curve.
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ruptures as long as they exhibit distinct magnitude-frequency dis-
tributions from the rest of the foreshocks.

Neither the laboratory experiment nor thenumericalmodel in this
study accounts for off-fault seismicity, such as that occurring on sub-
sidiary faults and within fault damage zones, which would introduce
additional complexity in applying ML to predict mainshocks. In addi-
tion, fault geometrical complexity and pore fluid pressure evolution,
which are not considered in our current laboratory and numerical
setting, could influence the occurrence of foreshocks43. Furthermore,
unlike in laboratory experiments, foreshocks are relatively rare in
natural settings, possibly due to detection limitations, posing a chal-
lenge for applying catalog-based ML or DL approaches. Indeed, a less
heterogeneous case in a meter-scale laboratory experiment31 pro-
duced too few foreshocks for our catalog-based ML method to be
applicable. However, ML or DL models that incorporate a network
representation of continuous waveform data may help overcome this
limitation.

Another key challenge lies in the limited availability of seismicity
catalogs that span multiple mainshock cycles, which are essential for
effectively training MLmodels. As demonstrated with laboratory data,
mainshock prediction accuracy strongly depends on training data size
(Fig. S13). A promising approach to addressing this issue is the incor-
poration of transfer learning techniques20, where synthetic data (e.g.,
from numerical or laboratory seismicity) is used to train an MLmodel,
whichcan thenbe adapted to real-world catalogswith sparsedata. This
approach, when combined with the network representation method,
may help overcome the current limitations in predicting natural seis-
mic events.

The underlying mechanisms behind the predictive capabilities of
ML allow us to extrapolate these findings to natural faulting scenarios.
In natural, heterogeneous fault zones, the evolution of physical

conditions within a foreshock zone during the precursory phase may
be characterized by increasing shear stresses on localized, slowly
slipping parts of faults. Although it remains difficult to predict the
eventual size of an earthquake before rupture begins, our results
suggest that the likelihood of a rupture expanding within the fore-
shock zone increases during this precursory phase. Furthermore, the
timing of mainshocks appears to be closely linked to these slowly
slipping regions, which could contribute to the emergence of pre-
cursory seismicity and hencemore predictable mainshock patterns. In
natural fault zones, such slowly slipping regions are often associated
with various types of slow earthquake activities56. Therefore, more
detailed monitoring of slow earthquakes and local fault slip velocities
could enhance our understanding of the predictability of large
earthquakes.

Methods
Experimental settings
We briefly summarize the laboratory experiment settings used to
measure acoustic emissions andmechanical data31. Acoustic emissions
were recorded using 64 shear-mode piezoelectric transducers with a
response frequency of 500 kHz. These sensors were attached to both
long sides of the lower sample, with 32 sensors on each side. The
signals were amplified 20 times and continuously sampled at 10 MHz.
The shear loadwasmeasuredusing a load cell. For further details, refer
to the original experimental studies30,31.

Event catalog in the meter-scale laboratory experiment
We utilize a catalog of laboratory quake cycles containing foreshock
activity31. This catalog is generated using the STA/LTA detection
technique combined with a grid search for spatial (x) and temporal (t)
information, and the ball drop calibration technique57 to determine
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Fig. 7 | Conceptual model illustrating how machine learning predicts a main-
shock on a fault. a–c A phenomenological depiction of plausible scenarios
occurring on the fault surface during a single laboratory quake cycle. d, e The
evolution of key physical parameters relevant to the emergence of precursory

seismicity. The event cycle is divided into two phases: the loading phase, where the
nominal shear stress progressively increases, and the precursory phase, where the
nominal shear stress plateaus.
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moment magnitude (Mw). The seismicity shows a non-patterned spa-
tial distribution (Fig. S1a, 1b) and follows a tapered Gutenberg-Richter
magnitude-frequency relation31,58.

The published catalog does not include detailed laboratory quake
information beyond their origin times, due to challenges in precisely
estimating magnitudes and hypocenters. However, our forecasting
method requires both quake and foreshock data. To address this, we
roughly estimate thequake information (Figure S1c, bluehistogram) and
validate these extrapolations post-prediction (see Methods for details).

Seismicmoment is estimated according toM = μDA, where μ is the
shearmodulus,D is the co-seismic slip amount, and A is the co-seismic
slip area. The rigidity of the host rock in the laboratory experiment is
μ = 41.2 GPa30. Assuming the entire fault co-seismically slips during
laboratory quakes, we estimate A as A = 0.1 × 1.5 = 0.15m2. We further
assumeD is uniform across the fault, estimating it at 0.1–0.2mmbased
on displacement data. The estimated seismic moment is thus
M = 0.62 ~ 1.24 × 106 N m, corresponding to moment magnitudes of
Mw = −2.2~−2.0. To account for potential non-uniform slip, we intro-
duce a random error of 10% to M.

The effective rigidity during co-seismic slip might be lower than
that of the host rock, as the simulated fault surfacedoes not fully arrest
the entire rupture. As a result, the estimated seismic moment could
carry an error of roughly an order of magnitude. Therefore, we use
Mw = −2.0 + error as themomentmagnitude of the quakes and validate
the prediction results within the range Mw = −3.0 to −2.0 for quake
moment magnitude. Ultimately, the extrapolation does not sig-
nificantly impact the prediction score, as shown in Fig. S3; the low
moment magnitude of the laboratory quakes does not meaningfully
reduce the prediction accuracy.

Preparation of nominal shear stress data
We use nominal shear force data measured on the reaction force bar
(Fig. 1a), provided by F. Yamashita. The shear force is converted to
shear stress and subsequently detrended (only the training set is used
to determine the trend). To account for the contribution of shear force
to fault shear stress, we divide the shear force by the fault area of 0.15
m2 to obtain the nominal shear stress. After the initial four quake-
cycles, the nominal shear stress stabilizes at a consistent level
throughout the experiment. However, a slight increasing trend, pos-
sibly due to hardening and compaction, is observed, which could
potentially impact the performance of the ML and DL models. To
mitigate this, we assume that the increasing trend is linear and remove
the trend using a linear regression based on the least squares method
(Fig. S4). Note that the regression coefficient was calculated using only
the training set, to prevent any information leakage into the validation
and test sets. The resulting coefficient is: τlin(t) = 40.3 × 10−4t + 66.9
MPa, where τlin is the linear regression line and t is the time in seconds.
Our training, validation, and test sets are continuous in time, and we
know the time stamp of each data point in the validation and test sets.
Thus, the detrending of validation and test sets can be done by sub-
tracting τlin (tvalid or ttest) from the raw shear stress data. This process is
even valid in real-time data processing if linear regression is a rea-
sonable assumption. We refer to this detrended nominal shear stress
as nominal shear stress in the main text. To effectively train the DL
model and ensure consistency with the MLmodel training conditions,
the nominal shear stress is normalized using the min-max values from
the training set.

Description of random forest algorithm
The Random Forest (RF) algorithm, developed by Breiman (2001)59

and implemented in the scikit-learn Python package by Louppe
(2013)60 and Pedregosa (2011)61, is a classification algorithm that
aggregates the outputs of multiple decision trees. Each decision tree
classifies input data based on statistical classification using input fea-
tures and target labels. At each node, the tree evaluates whether

feature k is above or below the threshold tk. If the feature value is
above/below the threshold, the data proceeds to the next left/right
node, and each subsequent node repeats this process. The thresholdat
each split is determined by the Classification and Regression Tree
(CART) algorithm, which aims to divide the current node into the two
purest possible next nodes by minimizing the cost function J,

Jðk, tkÞs, j =
mj, left

mj
MSEj, left +

mj, right

mj
MSEj, right ð1Þ

MSEj, node =
X

i2node
ðŷj, node � yj, iÞ2, ŷj, node =

1
mj, node

X
i2node

yj, i ð2Þ

where Jðk, tkÞs, j is the cost function when the current node j is sepa-
rated by split s using feature k at the threshold tk,mj,node is the number
of data points in the next node,mj is the number of data points before
the split, ŷj, node is the averaged value in the next node, and yj,i is the
label values in the next node. Minimizing the cost function Jðk, tkÞs, j
corresponds tofinding the feature k and threshold tk such that the data
within each split node is as homogeneous as possible, while the two
resulting nodes are as heterogeneous as possible. The RF model
aggregates the outputs from all the trees to provide the final predic-
tion values. This algorithm directly seeks the relationship between
features and labels, making it well-suited for data with non-flat,
monotonous distributions in the feature-label space. The conceptual
illustration of an RF algorithm is provided in Fig. S14a.

One may notice that R2 is higher in the training phase than in the
testing phase (Figs. 1 and 2). While such a difference is typically indi-
cative of overfitting, it has been well established that overfitting in
Random Forest (RF) models does not negatively impact validation or
testing scores59.

Description of a forecasting method
We employ the network representation53 and the classical ML techni-
que, Random Forest (RF), implemented in scikit-learn59–61 as a fore-
casting method (see details of RF model in “Methods” and Fig. S14a).
This approach, developed in a numerical study53, is designed to predict
the time remaining before synthetic mainshocks using only catalog
information. To compute input features, we define a network as a
group of earthquakes (e.g., enclosed by the green line in Fig. S14b) and
statistically summarize the catalog information regarding the origin
times and seismic moments. Specifically, we use 2 parameters
Xi = (Δti, Mi), where Δti is the event interval of each earthquake pair in
the current network, Mi is the seismic moment transformed by
M = 103ðMw +6:067Þ=262, and i denotes the ith earthquake in the current
network. The network abstracts them by taking the average and var-
iance in the current network as follows:

Xj =
Xj

i

X i

j
, Var ðX Þj =

1
j

Xj

i

ðXi � XjÞ
2 ð3Þ

where Xj is the average, Var is the variance, and j is the number of
earthquakes in the current network, which we define as the network
size. The network size j is determined as percentage of the average
foreshocknumber j=p f, wherep is the percentage, and f is the average
foreshock number in the training set. The number of networks and
percentage p are optimized by cross-validation as well as hyperpara-
meters in the RF model (see details in “Methods” and Table S2). Using
the multiple networks corresponds to incorporating the temporal
evolutionof seismicity,which is abstractedbyeachnetwork (Fig. S14c).
Therefore, the network representation conceptually corresponds to
adaptive timewindowswith no fixed duration, but with a duration that
changes depending on the stage of quake cycles. For example, the
notationM5f refers to the seismicmoment averaged over a network of
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5%of the total number of foreshocks over thequake cycles.Weuse log-
normalized values to effectively train the ML and DLmodels, although
the RF model does not require normalization.

For labels, we compute the time remaining before the quake for
each foreshock’s origin time. During the training phase, the computed
features are associated with the time to quake of the most recent
foreshock. If the latest event is a quake, we calculate the time to the
next quake. Additionally, we attempt to predict the nominal shear
stress observed by the reaction force bar. Given the differences in the
orders of magnitude between the labels, we use the log-normalized
value of time to quake and the normalized linear value of shear stress
for training and testing. Consequently, the trained ML model outputs
predictions of either the time to quake or the shear stress value by
considering the current and past catalog information extracted from
multiple networks.

Optimization of hyperparameters of the random forest model,
network sizes, and the number of networks
We first optimize the network sizes, number of networks, and hyper-
parameters of theRandomForest (RF)model usingmini-batch training
and validation to predict the time to laboratory quakes. Hyperpara-
meter tuning is performed using a simple grid search. Subsequently,
we fix the network sizes and the number of networks to ensure con-
sistent feature extraction and then optimize hyperparameters for
predicting nominal shear stress and synthetic variables. The training
batch size is set to 100, while the validationbatch size is 25. This results
in 6 and 4 batches for the training and validation sets, respectively.
Consequently, the model minimizes the loss across 24 different pairs
of training and validation sets. The loss function is the mean squared
error (MSE) of either the logarithmic time to quake or the linear shear
stress data. The optimized features include the average and variance of
Δti and Mi within networks of p = (100, 70, 50, 20, inst), where inst
refers to a network containing only two earthquakes (j=2), capturing
the instantaneous behavior. Thus, we use 20 features for each pre-
diction task (average and variance of (Δti,Mi) × across 5 networks). The
optimized hyperparameters of the RF model for each prediction task
are listed in Table S2.

Additionally, we derive feature importance from the trained RF
model based on the reduction of the cost function J (Eq. (1)), as shown
in Fig. S15. However, since each network uses overlapping data points
to compute averages and variances, features from different networks
are correlated. As a result, the absolute value of the importance is less
meaningful and primarily serves as an index indicating which features
are most frequently referenced in the current model. To visualize the
general trend of input data, we only present the features from the 20%
network for each prediction target.

Evaluation of the model performance
Wequantitatively evaluate the prediction score using the coefficient of
determination, calculated as logR2 and linR2, following themethodology
outlined in previous studies11,53:

logR2 = 1�
Pn

i = 1ðlog10yi � log10ŷiÞ2Pn
i = 1 ðlog10yi � log10yÞ2

ð4Þ

linR2 = 1�
Pn

i = 1 ðyi � ŷiÞ2Pn
i= 1 ðyi � yÞ2

ð5Þ

where n is the number of data points, yi is the true target values, ŷi is the
prediction, y is the average of yi. We use logarithmic labels to equalize
the contribution of values across different orders of magnitude in pre-
dicting the time to lab quake (Eq. (4)). Since the shear stress does not
evolve logarithmically, we apply the typical definition of R2 (Eq. (5)).

Deep learning algorithms and their optimized architectures
In order to compare the performance of the Random Forest (RF)
algorithm to deep learning (DL), which has also recently been used to
predict laboratory earthquakes18,21, we trained two classic DL archi-
tectures (a multilayer perceptron and a recurrent neural network) to
predict the time to laboratoryquakes and nominal shear stress. For the
multilayer perceptron (referred to as DNN here), the input dimension
consists of 20 features derived from the network representation, while
the output dimension is 1, corresponding to either the time to a
laboratory quake or the nominal shear stress at a given time. We apply
batch normalization63, Xavier initialization64, and dropout
regularization65. Mish activation66 is used as the nonlinear activation
function. The model architecture, the number of neurons (n), and
dropout probability are determined using a mini-batch training-vali-
dation process, similar to that used for training the RF model. For
optimization, we employ AMSgrad67 with a learning rate of lr = 0.001
and hyperparameters (β1, β2) = (0.9, 0.999). The mean squared error
(MSE) loss is minimized during gradient descent. The learning process
is terminated early when minimum validation loss is not updated for
100 epochs. The optimized architecture is shown in Fig. S16a.

For the recurrent neural network, we train a Long Short-Term
Memory (LSTM)68,69 architecture to test the robustness and model
independence of our results. Unlike traditional neural networks, LSTM
replaces standard neurons with memory blocks that inherently cap-
ture the history of input sequences. Since LSTM can capture the
temporal evolution of features, we use only 1 network (20% network, 4
features) to characterize seismicity. We apply orthogonal weight
initialization70, Xavier initialization64, and dropout regularization. The
activation function used is tanhðxÞ. Optimization follows the same
procedure as for theDNN, except that training is terminated early if the
minimum validation loss is not updated for 50 epochs. The optimized
architecture is shown in Fig. S16b.

The DL models yield comparable accuracy to RF models in both
predicting time to laboratory quake and nominal shear stress,
although unlike the RF algorithm, DL requires careful consideration of
potential overfitting (avoided here as shown by similar training and
testing performance). The current model is optimized for logarithmic
time to laboratory quakes, prioritizing this aspect over accuracy on a
linear scale.

Inter-event time model
Weconstruct a simple inter-event timemodel that forecasts the timing
of mainshocks based solely on the average recurrence intervals of
laboratory quakes11,19. At the occurrence of a laboratory earthquake,
the model outputs the average recurrence interval from the training
set, with the predicted time to the next event decreasing linearly.
Hence, it does not utilize any foreshock information and is only a
countdown from the previous main shock. Fig. S2 presents the pre-
dictions of the inter-event time model. The linear-scale accuracy is
linR2 = 0.73, while the log-scale accuracy is logR2 = � 0:28. When the
true recurrence interval exceeds the average recurrence, the model
predicts a negative value; for logR2 calculations, these values are set to
10−3 seconds.

Set up of a two-dimensional, fully dynamic earthquake-cycle
model to replicate the laboratory data
To examine the physical mechanisms underlying precursory behavior,
we develop a two-dimensional fully dynamic earthquake-cycle model
to replicate laboratory quake behavior (Fig. 4a, b). The model setup is
similar to those in Ito & Kaneko (2023)54 and Norisugi et al. (2024)53.
The fault is embedded in an elastic continuum and subjected to tec-
tonic loading from both edges. To prevent rupture initiation exclu-
sively from the fault’s edges, we also apply a time-independent
stressing rate (Fig. 4a).
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The numerical approach is based on a boundary integral
method71,72, adapted for a two-dimensional (in-plane, Mode II) fully
dynamic model of earthquake cycles. This dynamic approach allows
for the realistic simulation of dynamic ruptures, crucial for under-
standing earthquake rupture arrest and the resulting earthquake
sizes54,71. The fault length is 2400 mm, with 1200 mm regions at both
ends subjected to the imposed loading rate. The entire fault is divided
into 16,384 cells, each0.15mm in size. The fault’s constitutivebehavior
is governed by rate-and-state friction laws with the aging form of state
variable evolution73–75:

τ = σ f 0 +a ln
V
V0

� �
+b ln

V0θ
DRS

� �� �
,

dθ
dt

= 1� Vθ
DRS

ð6Þ

where τ is the shear strength, σ is the effective normal stress, a and b
are the rate-and-state constitutive parameters,V is the slip rate, f0 is the
friction coefficient at V = V0, θ is the state variable, and DRS is the
characteristic slip distance for state variable evolution. The parameter
a − b primarily controls the fault’s slip behavior, with positive and
negative values corresponding to velocity-strengthening (VS) and
velocity-weakening (VW)patches, respectively.We introduce frictional
heterogeneity on the fault with alternating VS and VW patches, where
aVS−bVS = 0.0025 and aVW − bVW = −0.0030, and lengths of LVS = 12mm
and LVW = 30mm. The 130-mmVS regions at both ends of the fault act
as permanent rupture barriers. The fault contains 50 VS patches and 51
VW patches. A uniform value of DRS = 1.5 nm is used to generate tiny
foreshocks. The parameters for this model are listed in Table S1.

Under slow loading, stick-slip frictional instability develops only in
the VW region, where the instability exceeds the critical nucleation
length. The theoretical estimation of the nucleation length relevant to
the present simulation is given by76:

h*
RA =

2
π

μ0bVWDRS

σðbVW � aVWÞ2
ð7Þ

where σ is the effective normal stress, μ0 =μ=ð1� νÞ, μ is the shear
modulus, ν is Poisson’s ratio, and aVW − bVW are the frictional con-
stitutive parameters on the velocity-weakening patch. Given the
parameters listed in Table S1, the estimated critical nucleation length
is h*

RA � 20 mm. The actual nucleation length is influenced by the
background loading rate and the manner in which the VW patch is
loaded72,76, so the actual nucleation size can differ from h*

RA. Within the
expected nucleation sizes, we confirm that enough spatial discretiza-
tion is applied not to produce one-cell instability, which causes
numerical artifacts.

We define the origin of a synthetic event as the moment when the
fault slip rate exceeds 1 cm/s at any location on the fault, and the end of
the event as when the slip rate decelerates below 0.9 cm/s. The slightly
lower threshold prevents double-counting of a single event with an
oscillating slip rate. The catalog contains the origin time (t), location (x),
and seismicmomentM = μAD, where μ is the shearmodulus, A is the co-
seismic slip area, andD is the co-seismic slip amount. Given that the fault
is one-dimensional, we assume that A is the square of the slip length.

When the loading rate from both edges is tuned to match the
value used in laboratory experiments (Vpl = 0.01 mm/s), the model
produces an unrealistically fast earthquake sequence with recurrence
intervals of less than one second, whereas laboratory experiments
yield intervals of 20 seconds ormore. Therefore, we use amuch slower
loading rate of Vpl = 50 nm/s and set the time-independent stressing
rate to _τ =0:05MPa/s, ensuring that the fault is primarily loadedby this
stressing rate. This discrepancy may arise due to differences in fault
dimensions, which affect the energy provided per unit area.

The synthetic catalog produces complex seismicity patterns
(Fig. S7a), with foreshock activity sometimes coherently clustering
near the fault edge or spreading toward the center. Locked areas

(without foreshocks) persist similarly to the laboratory situation31.
However, the event size distribution (Fig. S1c)31,58 is not fully repro-
duced, and the productivity of medium-sized foreshocks
(−5 < Mw < −4) is insufficient in this simulation (Fig. S7b). This may be
due to differences in the model’s dimensionality and frictional prop-
erties, as the dominant size of foreshocks is restricted by the VWpatch
size or nucleation size, and the behavior of rupture termination may
differ in a two-dimensional fault model. While there are some quali-
tative differences in the catalog, our focus here is to replicate the
fundamental and simplified physics of the laboratory situation rather
than achieve a perfect replication. Therefore, we use the synthetic
catalog and related physical quantities under the assumption that a
similar physical mechanism governs the production of laboratory
foreshocks and quakes.

Additionally, we vary the a−b values on the velocity-weakening
(VW) patches to examine how different degrees of fault heterogeneity
affect ML prediction performance. These additional cases include VW
patcha− b values of −0.0020 (Fig. S9), −0.0035 (Fig. S10), and −0.0015
(Fig. S11). Furthermore, to simulate a scenario that produces both partial
and full ruptures, we introduce a slightly longer (54mm) and weaker VS
barrier at the fault center, with (a−b)VS = 0.0017 (Fig. S12).

Method for Gutenberg-Richter b-value estimation
We follow54 and apply the maximum likelihood method to estimate b-
values from the synthetic catalog77,78:

b�value =
log10 e

Mw � ðMc � ΔMw=2Þ
ð8Þ

where Mw is the mean magnitude above Mc, Mc is the magnitude of
completeness, and ΔMw is the bin size. The foreshock catalog is
stacked across multiple mainshock cycles within the training set after
preprocessing, which involves removing events smaller than the
magnitude completeness threshold (Mc = −4.6) and events with a time
to synthetic quake smaller than 10−3 seconds. We set ΔMw = 0.05. The
standard error of the b-value is estimated as follows79:

ϵðb�valueÞ= 2:30ðb�valueÞ2ϵðMwÞ ð9Þ

where

ϵðMwÞ
2
=
Xn
i= 1

ðMi
w �MwÞ

2

nðn� 1Þ : ð10Þ

Data availability
The experimental event catalog is provided by the original study31. The
shear stress data from the laboratory experiment are available from
Futoshi Yamashita (National Research Institute for Earth Science and
Disaster Resilience, Japan) upon request. The synthetic data used to
reproduce all the results in this study are available in a permanent data
repository80.

Code availability
The Python scripts used to reproduce all results related to the
experiments and numerical simulations are available in the same
repository as the data80.
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Table S1 Parameters assumed in the numerical model of earthquake cycles
presented in the main text.

Parameters
𝜌 Density 2.980 g/cm3

𝜇 Rigidity 41.2 GPa
𝜈 Poisson’s ratio 0.25
𝑉pl Loading rate 50 nm/s
¤𝜏 Shear stress rate uniformly added to the entire fault 0.050 MPa/s
𝜎 Effective normal stress 6.7 MPa
𝑓0 Reference frictional coefficient 0.75
𝐷RS Characteristic slip distance for slip evolution 1.5 nm
𝑐p P-wave speed 6.92 km/s
𝑐s S-wave speed 3.63 km/s
𝑎VS Frictional constitutive parameter on VS patches 0.020
𝑏VS Frictional constitutive parameter on VS patches 0.0175
𝑎VW Frictional constitutive parameter on VW patches 0.020
𝑏VW Frictional constitutive parameter on VW patches 0.023
𝐿VS Length of VS patches 12 mm
𝐿VW Length of VW patches 30 mm
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Table S2 Hyperparameters of Random Forest optimized for each prediction task.

Tasks max depth min samples split max features n estimators
Time to lab quake 15 10 5 100
Nominal shear stress 10 10 5 100
Time to synthetic quake 20 30 5 200
Average shear stress 20 10 5 100
VS shear stress 20 10 5 100
Case in Figure S9 10 10 5 50
Case in Figure S10 25 30 5 100
Case in Figure S11 5 40 5 200
Case in Figure S12 20 10 5 200

max depth: the number of splits in a single tree.
min samples split: the minimum number of data in a node.
max features: the number of features used for a single split.
n estimators: the number of trees in an RF model.
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(a)

Generated mainshocks

Observed foreshocks

(b)

(c)

Fig. S1 The catalog data of meter-scale laboratory experiment. (a-b) Spatio-temporal distribution of laboratory
earthquakes observed in LB12-011, presented as a time series of seismicity along the fault distance (a) and width
direction (b). Blue lines represent the timings of laboratory quakes, while pink circles indicate the occurrences of
foreshocks. (c) Magnitude-frequency plot observed in LB12-011. Pink and blue represent foreshocks and laboratory
quakes, respectively. Note that the moment magnitudes of the laboratory quakes are estimated with rough approxima-
tions and include random errors (see Methods for details).
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(a)

(b)

Testing logR2=-2.8Testing linR2=0.73;

Fig. S2 (a–b) Prediction of time to laboratory quakes by the inter-event time model on timescales of tens of seconds
(a) and milliseconds (b). When the prediction score is negative, the logR2 is computed by setting the value to 10−3

seconds. Since the prediction relies solely on the average recurrence interval of laboratory quakes, it does not perform
well on the logarithmic scale.
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Case in the main text

(a)
Training R2 = 0.98, Testing R2 = 0.82 (σ=5x10-3)

Normalized logarithmic misfit0 1
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R
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 s
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(b)

(c)

Fig. S3 The effect of assuming different magnitudes of laboratory quakes. (a) Prediction score as a function of the
extrapolated moment magnitude for laboratory quakes. The blue histogram indicates the range of moment magnitudes
assumed as the quake magnitudes. (b-c) Prediction of time to laboratory quakes in the test set when the quake
magnitude is set to 𝑀w = −3.0+error, the minimum value used in this validation, on a scale of tens of seconds (b) and
milliseconds (c). In (c), the blue-shaded area represents the 5 to 95% percentile range of the prediction, and the green
color bar indicates the normalized logarithmic misfit. The standard deviation of score is sampled from 100 different
Random Forest model randomly trained. While the prediction score slightly decreases with smaller laboratory quake
magnitudes, it remains above logR2=0.80, demonstrating that the prediction is satisfactory across timescales from tens
of seconds to milliseconds, regardless of the assumed moment magnitudes.
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(a)

(b)

Fig. S4 Nominal shear stress and detrended nominal shear stress in a laboratory experiment. (a) Raw shear stress
data before detrending. The black curve represents the nominal shear stress in the training set, while the orange dashed
line indicates the linear regression of the training set. The blue and red curves are shear stress data in the validation
and test sets, respectively. (b) The nominal shear stress after detrending. The linear trend obtained from the training
set is removed from training, validation, and test sets. Shear stress values (represented by square dots) are sampled at
the occurrences of foreshocks and laboratory quakes.
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(a)

(b)
Normalized logarithmic misfit0 1

Training logR2=0.78, Testing logR2=0.80

Training logR2=0.79, Testing logR2=0.83

Normalized logarithmic misfit0 1

(c)

(d)

Fig. S5 (a–b) Prediction of time to laboratory quakes using a Deep Neural Network (DNN) on a linear time scale
(a) and event number scale (b). (c–d) Prediction using a Long Short-Term Memory (LSTM) on a linear time scale (c)
and event number scale (d). The red lines represent the actual time to laboratory quakes, while the blue lines indicate
the model predictions. The green color bar denotes the logarithmic misfit. Both models appear to mitigate overfitting,
and LSTM exhibits surprising accuracy that testing accuracy surpasses the training accuracy. The LSTM score is
comparable to the machine learning model (Figure 1c-1d).
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(a)

(b)
Normalized linear misfit0 1

Training linR2=0.78, Testing linR2=0.76

Training logR2=0.83, Testing logR2=0.77
(c)

(d)
Normalized linear misfit0 1

Fig. S6 (a–b) Prediction of nominal shear stress using a Deep Neural Network (DNN) on a linear time scale (a)
and event number scale (b). (c–d) Prediction using a Long Short-Term Memory (LSTM) on a linear time scale (c)
and event number scale (d). The red lines represent the nominal shear stress, while the blue lines indicate the model
predictions. The green color bar denotes the linear misfit. The DNN appears to mitigate overfitting, whereas the LSTM
tends to overfit, although the difference of scores in training and test set is relatively small.
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(a)

Synthetic

Synthetic foreshocks

Mainshocks

(b)

(c)

Fig. S7 Synthetic catalog generated by the numerical model, replicating the laboratory experimental data. (a)
Spatio-temporal distribution of synthetic quakes along the fault distance. Blue lines indicate the timings of synthetic
quakes, while pink circles represent the occurrences of synthetic foreshocks. The background shading shows the
fault’s characteristics, with gray indicating velocity-strengthening patches and white indicating velocity-weakening
patches. (b) Magnitude-frequency plot of the synthetic catalog. Pink and blue represent synthetic foreshocks and
quakes, respectively. The histogram bins are set to match those in Figure S1. (c) Estimated 𝑏-values (blue line) and
cumulative event count (red line) as a function of logarithmic time to synthetic quake. The shaded region represents
the estimation error of the b-value (see Methods for details). The estimation is performed at every 0.1 log time step
for the cumulative, stacked catalog. The relatively large 𝑏-values compared to natural observations may be attributed
to the 1-D fault assumption.
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Small event within one VW patch(a)

Large event propagating

through several VS patches

(b)

(c) (d)

Fig. S8 Coseismic slip and shear stress distributions before and after synthetic events on a one-dimensional fault.
The gray/white areas represent velocity-strengthening (VS) and velocity-weakening (VW) patches, respectively. (a-b)
Total slip and shear stress evolution before (blue curve) and after (red curve) a small event arrested within the VW
patch. (c-d) Total slip and shear stress before (blue curve) and after (red curve) a larger event (not the mainshock)
that propagates through several VS patches. The light blue dots at the bottom in (a-d) indicates the hypocenter of the
events (i.e., the points that the velocity first exceeds 1 cm/s). The green stars in (c-d) indicate the VS patches that
halt the rupture. These rupture-arresting VS patches show significant stress concentration (i.e., slip velocity increases
logarithmically). Prior to rupture propagation in (c-d), the patches that allow rupture propagation have slightly higher
shear stress levels (i.e., faster creeping velocity) compared to those that stop the rupture (starred patches).
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(a)

(b)

Normalized logarithmic misfit0 1

Training logR2=0.99, Testing logR2=0.96 (σ=8x10-4)
(c)

(d)

(e) (f)

Frequent events

Frequent

large events

Cluster containing
synthetic quakes

a-b on VW = -0.0020

Fig. S9 Results of the Random Forest (RF) prediction for a synthetic catalog generated by the numerical model
with weaker velocity-weakening (VW) (𝑎 − 𝑏)VW = −0.0020 patches. (a) Magnitude-frequency relation. Pink bars
represent foreshocks, while blue bars indicate defined mainshocks. Small events below the gray line are removed
during catalog processing. (b) Space-time plot of synthetic seismicity. Pink dots denote foreshocks, and the blue line
marks the timing of synthetic quakes. (c–d) Prediction of time to synthetic quakes at timescales of tens of seconds (c)
and milliseconds (d). Foreshocks occur only immediately before quakes, and no dots appear in the linear-scale plot.
(e–f) Probability density of velocity-strengthening (VS) shear stress as a function of Δ𝑡20 𝑓 (e) and 𝑀20 𝑓 (f). During
time periods when the log-scale prediction is accurate, a strong correlation between seismicity and VS shear stress
emerges.
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Fig. S10 Results of the Random Forest (RF) prediction for a synthetic catalog generated by the numerical model
with stronger velocity-weakening (VW) (𝑎 − 𝑏)VW = −0.0035 patches. (a) Magnitude-frequency relation. Pink bars
represent foreshocks, while blue bars indicate defined mainshocks. Small events below the gray line are removed
during catalog processing. (b) Space-time plot of synthetic seismicity. Pink dots denote foreshocks, and the blue line
marks the timing of synthetic quakes. (c–d) Prediction of time to synthetic quakes at timescales of tens of seconds (c)
and milliseconds (d). Compared to the default case shown in Figure 4, the prediction scores deteriorate slightly, likely
due to more unstable nature of the fault slip caused by stronger VW patches. (e–f) Probability density of velocity-
strengthening (VS) shear stress as a function of Δ𝑡20 𝑓 (e) and 𝑀20 𝑓 (f). The correlation between VS shear stress and
seismicity characteristics appears slightly weaker than in the default case.
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Normalized logarithmic misfit0 1

Training logR2=0.48, Testing logR2=0.05 (σ=5x10-3)
(c)

(d)

(e) (f)Uncorrelated cluster

a-b on VW = -0.0015

Uncorrelated cluster

Fig. S11 Results of the Random Forest (RF) prediction for a synthetic catalog generated by the numerical model
with weaker velocity-weakening (VW) (𝑎 − 𝑏)VW = −0.0015 patches. (a) Magnitude-frequency relation. Pink bars
represent foreshocks, while blue bars indicate defined mainshocks. Small events below the gray line are removed
during catalog processing. In this case, distinguishable mainshocks are absent, making the machine learning task ill-
defined. (b) Space-time plot of synthetic seismicity. Pink dots denote foreshocks, and the blue line marks the timing
of synthetic quakes. (c–d) Prediction of time to synthetic quakes at timescales of tens of seconds (c) and milliseconds
(d). Due to the ill-defined nature of the task, predictions perform poorly at both timescales. (e–f) Probability density
of velocity-strengthening (VS) shear stress as a function of Δ𝑡20 𝑓 (e) and 𝑀20 𝑓 (f). Uncorrelated clusters emerge,
indicating weak relationships between seismicity characteristics and VS shear stress.
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Training logR2=0.88, Testing logR2=0.80 (σ=3x10-3)
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Case with partial rupture

(b)
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Partial rupture

Fig. S12 Results of the Random Forest (RF) prediction for a synthetic catalog generated by the numerical model
that produces partial ruptures. (a) Magnitude-frequency relation. Pink bars represent foreshocks, while blue bars
indicate defined mainshocks. Small events below the gray line are removed during catalog processing. The peak
around 𝑀w = −3 corresponds to partial ruptures. (b) Space-time plot of synthetic seismicity preceding both full and
partial ruptures. Black dots represent foreshocks, the green star denotes the hypocenter of a partial rupture, and the
blue star marks the hypocenter of a full rupture. The light-colored region highlights a slightly long, weak velocity-
strengthening (VS) barrier that facilitates partial ruptures. The pink region corresponds to high slip velocity, serving
as a proxy for the coseismic rupture area. (c–d) Prediction of time to synthetic quakes at timescales of tens of seconds
(c) and milliseconds (d). The black arrows indicate the data points of partial ruptures. Despite the occurrence of partial
ruptures, the RF model accurately predicts the timing of both partial and full ruptures. (e–f) Probability density of
VS shear stress as a function of Δ𝑡20 𝑓 (e) and 𝑀20 𝑓 (f). The correlation between VS shear stress and seismicity
characteristics emerges, similar to the default case (Figure 5).
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Normalized logarithmic misfit0 1

Training logR2=0.50, Testing logR2=-0.01

(c) Training logR2=0.85, Testing logR2=0.40

2 cycles
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Fig. S13 Effect of training data size on laboratory quake prediction using the Random Forest (RF) model. (a) The
logR2 scores as a function of the number of cycles used for training. Each dot represents a segment of 𝑛 continuous
cycles from the training set. The blue line indicates the average score. (b) Example of prediction results using a 2-
cycle training set. (c) Example of prediction results using a 6-cycle training set. The logR2 score becomes comparable
to the default case when the training dataset size exceeds the half of the default case shown in Figure 1.
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Fig. S14 Conceptual illustrations of (a) the Random Forest algorithm and (b-c) network representation used for
forecasting the time to lab quakes or shear stress. In (b-c), pink circles represent foreshock data, while the blue line
denotes the timing of laboratory quakes. In (b), the green and orange groups illustrate the current and next network
for the individually circled earthquake. Statistically abstracted catalog information is associated with the time to lab
quake of the most recent earthquake within the current network (individually circled). In (c), the multiple network
representation uses several networks of different sizes (represented by differently styled circles) simultaneously to
capture the temporal evolution of earthquake patterns.
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(a)

(b)

Fig. S15 Feature importance output from the trained Random Forest (RF) model. (a) Laboratory quake predictions.
(b) Synthetic quake predictions documented in the main text. Higher importance means that the feature is frequently
used to split the input data when making trees in the RF model.
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Fig. S16 Conceptual illustration of Deep Learning architectures. (a) The architecture of Deep Neural Network
(DNN). Each box represents a single layer, where n denotes the number of neurons. The mean squared error (MSE)
loss reaches its minimum when 𝑛 = 256 for predicting time to laboratory quakes and 𝑛 = 32 for nominal shear
stress. The dropout probability is set to 𝑝 = 0.3. (b) The architecture of Long Short-Term Memory (LSTM). Each
box represents a single LSTM block, where ℎ denotes the history length of input features. The MSE loss reaches
its minimum at ℎ = 5 and 𝑛 = 128 for predicting both the time to laboratory quakes and nominal shear stress. The
dropout probability is set to 𝑝 = 0.5.
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